Control-Oriented Modeling and Analysis for Automotive Fuel Cell Systems

[+] Author and Article Information
Jay T. Pukrushpan, Huei Peng, Anna G. Stefanopoulou

Automotive Research Center, Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2125

J. Dyn. Sys., Meas., Control 126(1), 14-25 (Apr 12, 2004) (12 pages) doi:10.1115/1.1648308 History: Received April 14, 2003; Revised August 11, 2003; Online April 12, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Yang, W-C., Bates, B., Fletcher, N., and Pow, R., Control Challenges and Methodologies in Fuel Cell Vehicle Development, SAE Paper 98C054.
Guzzella, L., 1999, Control Oriented Modelling of Fuel-Cell Based Vehicles, Presentation in NSF Workshop on the Integration of Modeling and Control for Automotive Systems.
Amphlett,  J. C., Baumert,  R. M., Mann,  R. F., Peppley,  B. A., and Roberge,  P. R., 1995, Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell, J. Electrochem. Soc., 142(1), pp. 9–15.
Bernardi,  D. M., and Verbrugge,  M. W., 1992, A Mathematical model of the solid polymer electrolyte fuel cell, J. Electrochem. Soc., 139(9), pp. 2477–2491.
Lee,  J. H., and Lalk,  T. R., 1998, Modeling fuel cell stack systems, J. Power Sources, 73, pp. 229–241.
Springer,  T. E., Zawodzinski,  T. A., and Gottesfeld,  S., 1991, Polymer Electrolyte Fuel Cell Model, J. Electrochem. Soc., 138(8), pp. 2334–2342.
Barbir, F., Balasubramanian, B., and Neutzler, J., 1999, Trade-off design analysis of operating pressure and temperature in PEM fuel cell systems, Proceedings of the ASME Advanced Energy Systems Division, v. 39, pp. 305–315.
Friedman, D. J., Egghert, A., Badrinarayanan, P., and Cunningham, J., Balancing stack, air supply and water/thermal management demands for an indirect methanol PEM fuel cell system, SAE Paper 2001-01-0535.
Akella, S., Sivashankar, N., and Gopalswamy, S., 2001, Model-based systems analysis of a hybrid fuel cell vehicle configuration, Proceedings of 2001 American Control Conference.
Atwood, P., Gurski, S., Nelson, D. J., Wipke, K. B., and Markel, T., 2001, Degree of hybridization ADVISOR modeling of a fuel cell hybrid electric sport utility vehicle, Proceedings of 2001 Joint ADVISOR/PSAT vehicle systems modeling user conference, pp. 147–155.
Boettner, D. D., Paganelli, G., Guezennec, Y. G., Rizzoni, G., and Moran, M. J., 2001, Component power sizing and limits of operation for proton exchange membrane (PEM) fuel cell/battery hybrid automotive applications, Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition.
Turner, W., Parten, M., Vines, D., Jones, J., and Maxwell, T., 1999, Modeling a PEM fuel cell for use in a hybrid electric vehicle, Proceedings of the 1999 IEEE 49th Vehicular Technology Conference, v.2, pp. 1385–1388.
Boettner, D. D., Paganelli, G., Guezennec, Y. G., Rizzoni, G., and Moran, M. J., 2001, Proton exchange membrane (PEM) fuel cell system model for automotive vehicle simulation and control, Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition.
Hauer, K.-H., Friedmann, D. J, Moore, R. M., Ramaswamy, S., Eggert, A., and Badrinarayana, P., Dynamic Response of an Indirect-Methanol Fuel Cell Vehicle, SAE Paper 2000-01-0370.
Padulles, J., Ault, G. W., Smith, C. A., and McDonald, J. R., 1999, Fuel cell plant dynamic modeling for power systems simulation, Proceedings of 34th Universities Power Engineering Conference, v. (34 ),1, pp. 21–25.
Pischinger, S., Schönfelder, C., Bornscheuer, W., Kindl, H., and Wiartalla, A., Integrated Air Supply and Humidification Concepts for Fuel Cell Systems, SAE Paper 2001-01-0233.
Watanabe,  M., Uchida,  H., Emori,  M., April 1998, Analyses of Self-Humidification and Suppression of Gas Crossover in Pt-Dispersed Polymer Electrolyte Membranes for Fuel Cells, J. Electrochem. Soc., 145(4), pp. 1137–1141.
Larminie, J. and Dicks, A., 2000, Fuel Cell Systems Explained, West Sussex, England, John Wiley & Sons Inc.
Lee,  J. H., Lalk,  T. R., and Appleby,  A. J., 1998, Modeling electrochemical performance in large scale proton exchange membrane fuel cell stacks, J. Power Sources, 70, pp. 258–268.
Kordesch, K. and Simader, G., 1996, Fuel Cells and Their Applications, Weinheim, Germany, VCH.
Laurencelle,  F., Chahine,  R., Hamelin,  J., Agbossou,  K., Fournier,  M., Bose,  T. K., and Laperriere,  A., 2001, Characterization of a Ballard MK5-E proton exchange membrane fuel cell stack, Fuel Cells Journal, 1(1), pp. 66–71.
Amphlett,  J. C., Baumert,  R. M., Mann,  R. F., Peppley,  B. A., Roberge,  P. R., and Rodrigues,  A., 1994, Parametric modelling of the performance of a 5-kW protonexchange membrane fuel cell stack, J. Power Sources, 49, pp. 349–356.
Nguyen,  T. V., and White,  R. E., 1993, A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells, J. Electrochem. Soc., 140(8), pp. 2178–2186.
Mann,  R. F. , 2000, Development and application of a generalized steady-state electrochemical model for a PEM fuel cell, J. Power Sources, 86, pp. 173–180.
Baschuk,  J. J., and Li,  X., 2000, Modeling of polymer electrolyte membrane fuel cells with variable degrees of water flooding, J. Power Sources, 86, pp. 186–191.
Dutta,  S., Shimpalee,  S., and Van Zee,  J. W., 2001, Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell, Int. J. Heat Mass Transfer, 44, pp. 2029–2042.
Moraal, P. and Kolmanovsky, I., Turbocharger Modeling for Automotive Control Applications, SAE Paper 1999-01-0908.
Cunningham, J. M., Hoffman, M. A., Moore, R. M., and Friedman, D. J., Requirements for a Flexible and Realistic Air Supply Model for Incorporation into a Fuel Cell Vehicle (FCV) System Simulation, SAE Paper 1999-01-2912.
Adams, J. A., Yang, W-C., Oglesby, K. A., and Osborne, K. D., The development of Ford’s P2000 fuel cell vehicle, SAE Paper 2000-01-1061.
Gravdahl, J. T. and Egeland, O., 1999, Compressor Surge and Rotating Stall, Springer, London.
Kailath, T., 1980, Linear Systems, Prentice-Hall, New Jersey.
Thomas, P., 1999, Simulation of Industrial Processes for Control Engineer, London, Butterworth Heinemann.


Grahic Jump Location
Automotive fuel cell propulsion system
Grahic Jump Location
Effect of membrane water content (100°C and 2.5 bar air pressure)
Grahic Jump Location
System net power at different stack current and oxygen excess ratios
Grahic Jump Location
Simulation results of the fuel cell system model for a series of input step changes
Grahic Jump Location
Static feedforward using steady-state map
Grahic Jump Location
Fuel cell response on polarization curve. Solid line assumes fully humidified membrane; dashed line represents drying membrane.
Grahic Jump Location
Compressor transient response on compressor map
Grahic Jump Location
Simplified fuel cell reactant supply system
Grahic Jump Location
Fuel cell stack block diagram
Grahic Jump Location
Fuel cell polarization curve fitting results at 80°



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In