Estimation, Control and Optimization of Curing in Thick-Sectioned Composite Parts

[+] Author and Article Information
Sanjay Parthasarathy, Susan C. Mantell, Kim A. Stelson

Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455

J. Dyn. Sys., Meas., Control 126(4), 824-833 (Mar 11, 2005) (10 pages) doi:10.1115/1.1850536 History: Received July 16, 2003; Revised January 06, 2004; Online March 11, 2005
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Bogetti,  T. A., and Gillespie,  J. W., 1991, “Two-Dimensional Cure Simulation of Thick Thermosetting Composites,” J. Compos. Mater., 25, pp. 239–273.
Michaud,  D. J., Beris,  A. N., and Dhurjati,  P. S., 2002, “Thick-Sectioned RTM Composite Manufacturing, Part II. Robust Cure Cycle Optimization and Control,” J. Compos. Mater., 36, pp. 1201–1232.
Michaud,  D. J., Beris,  A. N., and Dhurjati,  P. S., 2002, “Thick-Sectioned RTM Composite Manufacturing: Part I—In Situ Cure Model Parameter Identification and Sensing,” J. Compos. Mater., 36, pp. 1175–1200.
Michaud,  D. J., Beris,  A. N., and Dhurjati,  P. S., 1998, “Curing Behavior of Thick-Sectioned RTM Composites,” J. Compos. Mater., 32, pp. 1273–1296.
Mantell, S. C., and Eriksen, C., 2001, “The Effect of Cure Path on Residual Strains in Thick Composite Parts,” in American Composites Society 16th Technical Conference on Composite Materials, Blacksburg, VA, American Composites Society.
Choi,  M. A., Lee,  M. H., Chang,  J., and Lee,  S. J., 1999, “Three-Dimensional Simulations of the Curing Step in the Resin Transfer Molding Process,” Polym. Compos., 20, pp. 543–552.
Twardowski,  T. E., Lin,  S. E., and Geil,  P. H., 1993, “Curing in Thick Composite Laminates: Experiment and Simulation,” J. Compos. Mater., 27, pp. 216–250.
Ciriscioli,  P. R., Springer,  G. S., and Lee,  W. I., 1991, “An Expert System for Autoclave Curing of Composites,” J. Compos. Mater., 25, pp. 1542–1587.
Pillai,  V. K., Beris,  A. N., and Dhurjati,  P. S., 1994, “Implementation of Model-Based Optimal Temperature Profiles for Autoclave Curing of Composites Using a Knowledge-Based System,” Ind. Eng. Chem. Res., 33, pp. 2443–2452.
Dunkers,  J. P., Flynn,  K. M., Parnas,  R. S., and Sourlas,  D., 2002, “Development of a Model Assisted Feedback Control Algorithm for Liquid Composite Molding, and Evaluation of Controller Robustness,” Composites, Part A, 33, p. 841.
Tam, A. S., and Gutowski, T. G., 1989, “Nonlinear Process Controller for Curing a Thermoset Composite,” in International SAMPE Symposium and Exhibition Book, Covina, CA.
Soucy, K. A., and Holt, B. R., 1992, “Modeling, Estimation and Control of Polymer Composite Processing,” American Control Conference.
White,  S. R., and Hahn,  H. T., 1993, “Cure Cycle Optimization for the Reduction of Processing-Induced Residual Stresses in Composite Materials,” J. Compos. Mater., 27, pp. 1352–1378.
Ramakrishnan,  B., Zhu,  L., and Pitchumani,  R., 2000, “Curing of Composites Using Internal Resistive Heating,” J. Manuf. Sci. Eng., 122, pp. 124–131.
Rai,  N., and Pitchumani,  R., 1997, “Rapid Cure Simulation Using Artificial Neural Networks,” Composites, Part A, 28, pp. 847–859.
Demirci, H. H., and Coulter, J. P., 1994, “Intelligent Control of Resin Transfer Molding Processes (RTM) Utilizing Neural Networks and Nonlinear Optimization Methods,” ASME Proceedings on Design and Performance of Composite Materials, MD-52.
Astrom, K. J., and Wittenmark, B., 1989, Adaptive Control, Reading, Addison-Wesley, MA.
Doyle,  F. J., 1998, “Nonlinear Inferential Control for Process Applications,” ASME J. Process Control, 8, pp. 339–353.
Henson, M. A., and Seborg, D. E., eds., 1997, Nonlinear Process Control, Prentice–Hall, Englewood Cliffs, NJ.
Isidori, A., 1989, Nonlinear Control Systems, 1989: Springer-Verlag, Berlin.
Vidyasagar, M., 1978, Nonlinear Systems Analysis, Prentice–Hall, Englewood Cliffs, NJ.
Enns,  D., Bugajski,  D., Hendrick,  R., and Stein,  G., 1994, “Dynamic Inversion: An Evolving Methodology for Flight Control Design,” Int. J. Control, 59, pp. 71–91.
Kang,  W., and Krener,  A. J., 1992, “Extended Quadratic Controller Normal Form and Dynamic State Feedback Linearization of Nonlinear Systems,” SIAM J. Control Optim., 30, pp. 1319–1337.
Kolavennu,  S., Palanki,  S., and Cockburn,  J. C., 2001, “Nonlinear Control of Nonsquare Multivariable Systems,” Chem. Eng. Sci., 56, pp. 2103–2110.
Kolavennu,  S., Palanki,  S., and Cockburn,  J. C., 2001, “Robust Controller Design for Multivariable Nonlinear Systems Via Multi-Model H2/H¥ Synthesis,” Chem. Eng. Sci., 56, pp. 4339–4349.
Luenberger,  D. G., 1971, “An Introduction to Observers,” IEEE Trans. Autom. Control, AC-16, pp. 596–602.
Kwakernaak, H., and Sivan, R., 1972, Linear Optimal Control Systems, Wiley Interscience, New York, Vol. XXV.
Soroush,  M., 1997, “Nonlinear State-Observer Design with Application to Reactors,” Chem. Eng. Sci., 52, pp. 387–404.
Daoutidis,  P., and Kravaris,  C., 1994, “Dynamic Output Feedback Control of Minimum-Phase Multivariable Nonlinear Processes,” Chem. Eng. Sci., 49, pp. 433–447.
Kantor,  J. C., 1989, “A Finite Dimensional Nonlinear Observer for an Exothermic Stirred-Tank Reactor,” Chem. Eng. Sci., 44, pp. 1503–1510.
Gibon-Fargeot,  A. M., Hammouri,  H., and Celle,  F., 1994, “Nonlinear Observers for Chemical Reactors,” Chem. Eng. Sci., 49, pp. 2287–2300.
Kazantzis,  N., Kravaris,  C., and Wright,  R. A., 2000, “Nonlinear Observer Design for Process Monitoring,” Ind. Eng. Chem. Res., 39, pp. 408–419.
Alvarez,  J., and Lopez,  T., 1999, “Robust Dynamic State Estimation of Nonlinear Plants,” AIChE J., 45, pp. 107–123.
Farza,  M., Hammouri,  H., Othman,  S., and Busawon,  K., 1997, “Nonlinear Observers for Parameter Estimation in Bioprocesses,” Chem. Eng. Sci., 52, pp. 4251–4267.
Farza,  M., Hammoudi,  H., Jallur,  C., and Creto,  J., 1999, “State Observation of a Nonlinear System: Application to (Bio)Chemical Processes,” AIChE J., 45, pp. 93–106.
Soroush,  M., and Kravaris,  C., 1992, “Nonlinear Control of a Batch Polymerization Reactor. An Experimental Study,” AIChE J., 38, pp. 1429–1448.
Soroush,  M., 1998, “State and Parameter Estimations and Their Applications in Process Control,” Comput. Chem. Eng., 23, pp. 229–245.
Soroush,  M., and Kravaris,  C., 1994, “Nonlinear Control of a Polymerization Cstr with Singular Characteristic Matrix,” AIChE J., 40, pp. 980–990.
Iyer,  N. M., and Farell,  A. E., 1996, “Design of a Stable Adaptive Nonlinear Observer for an Exothermic Stirred Tank Reactor,” Comput. Chem. Eng., 20, pp. 1141–1147.
Hojjati,  M., and Hoa,  S. V., 1994, “Curing Simulation of Thick Thermosetting Composites,” Compos. Manuf., 5, pp. 159–169.
Kamal,  M. R., and Sourour,  S., 1973, “Kinetics and Thermal Characterization of Thermoset Cure,” Polym. Eng. Sci., 13, pp. 59–64.
Calado, V. M. A., and Advani, S. G., 1999, “Thermoset Resin Cure Kinetics and Rheology,” in Processing of Composites, R. S. Dave and A. C. Loos, eds., Hanser/Gardner, Cincinatti, OH.
Voorakaranam,  S., and Joseph,  B., 1999, “Model Predictive Inferential Control with Application to a Composites Manufacturing Process,” Ind. Eng. Chem. Res., 38, pp. 433–450.
1992, ASTM Standard E837-99: Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method, American Society for Testing and Materials, Philadelphia, PA.
Mantell,  S. C., Ciriscioli,  P. R., and Almen,  G., 1995, “Cure Kinetics and Rheology Models for ICI Fiberite 977-3 and 977-2 Thermosetting Resins,” Composites, 14, pp. 847–865.
Parthasarathy, S., 2002, “Real-Time Control and Optimization of Curing in Thick Sectioned Thermoset Composites,” Ph.D. thesis, Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN.


Grahic Jump Location
Experimental temperature profile using MRCC for a thick sectioned composite part
Grahic Jump Location
Block diagram for control, estimation and optimization of curing
Grahic Jump Location
Discretization of part geometry in the thickness direction
Grahic Jump Location
Prediction horizon for online optimization
Grahic Jump Location
Comparison of experimental and simulated (reduced order model) temperatures in the 48 ply part sectioned composite
Grahic Jump Location
Simulation of the temperature profile for a 48 ply part using a DI controller, with gain KDI=0.025
Grahic Jump Location
Temperature estimation error within a 48 ply composite using the nonlinear observer with θ=0.02°C/s
Grahic Jump Location
Computed cost functions J1 and J2 for varying heating rates for a 48-layer part
Grahic Jump Location
Optimized heating rates for a 48 ply composite
Grahic Jump Location
Simulated temperature profiles in a 48 ply composite using online optimization
Grahic Jump Location
Temperature profile in a 48 ply composite with nonlinear control and online optimization
Grahic Jump Location
Heat flux actuation command to the heater elements
Grahic Jump Location
Estimation of temperature at the center of a 48 ply composite
Grahic Jump Location
A comparison of setpoint temperature profiles using MRCC and the online optimizer for a 48 ply part
Grahic Jump Location
Online optimization of the temperature heating rate



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In