Technical Briefs

Recursive Identification of Nonlinear Cascade Systems With Time-Varying General Input Backlash

[+] Author and Article Information
Jozef Vörös

Faculty of Electrical Engineering and
Information Technology,
Slovak Technical University,
Institute of Control and Industrial Informatics,
Ilkovicova 3, 812 19 Bratislava, Slovakia
e-mail: jvoros@elf.stuba.sk

Contributed by the Dynamic Systems Division of ASME for publication in the JOURNALOF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received September 20, 2011; final manuscript received March 14, 2012; published online October 30, 2012. Assoc. Editor: Douglas Adams.

J. Dyn. Sys., Meas., Control 135(1), 014504 (Oct 30, 2012) (5 pages) Paper No: DS-11-1293; doi: 10.1115/1.4006630 History: Received September 20, 2011; Revised March 14, 2012

Recursive identification of nonlinear cascade systems with a time-varying general input backlash and a linear dynamic system is presented. A new analytic form of general backlash characteristic description is used, where instead of the straight lines determining the upward and downward parts of backlash characteristic, general curves are considered. All the parameters in the cascade model equation are separated and their estimation is solved as a quasi-linear problem using the recursive least squares method with internal variable estimation. Simulation studies are included for more cascade systems with time-varying general input backlash.

© 2013 by ASME
Your Session has timed out. Please sign back in to continue.


Nordin, M., and Gutman, P. O., 2002, “Controlling Mechanical Systems With Backlash—A Survey,” Automatica, 38(10), pp.1633–1649. [CrossRef]
Kalaš, V., Jurišica, L., Žalman, M., Almássy, S., Sivicek, P., Varga, A., and Kalaš, D., 1985, Nonlinear and Numerical Servosystems, Alfa/SNTL, Bratislava, Slovakia(in Slovak).
Tao, G., and Canudas de Wit, C., eds., 1997, “Special Issue on Adaptive Systems With Non-Smooth Nonlinearities,” Int. J. Adapt. Control Signal Process., 11(1), pp.1–100.
Tao, G., and Kokotovic, P. V., 1993, “Adaptive Control of Systems With Backlash,” Automatica, 29(2), pp.323–335. [CrossRef]
Bai, E. W., 2002, “Identification of Linear Systems With Hard Input Nonlinearities of Known Structure,” Automatica, 38(5), pp.853–860. [CrossRef]
Vörös, J., 1997, “Parameter Identification of Discontinuous Hammerstein Systems,” Automatica, 33(6), pp.1141–1146. [CrossRef]
Vörös, J., 2003, “Recursive Identification of Hammerstein Systems With Discontinuous Nonlinearities Containing Dead-Zones,” IEEE Trans. Autom. Control, 48(12), pp.2203–2206. [CrossRef]
Zhang, X., and Tan, Y., 2008, “Modelling of Ultrasonic Motor With Dead-Zone Based on Hammerstein Model Structure,” J. Zhejiang Univ., Sci. A, 9(1), pp.58–64. [CrossRef]
Cerone, V., and Regruto, D., 2007, “Bounding the Parameters of Linear Systems With Input Backlash,” IEEE Trans. Autom. Control, 52(3), pp.531–536. [CrossRef]
Dong, R., Tan, Q., and Tan, Y., 2009, “Recursive Identification Algorithm for Dynamic Systems With Output Backlash and Its Convergence,” Int. J. Appl. Math. Comput. Sci., 19(4), pp.631–638. [CrossRef]
Dong, R., Tan, Y., and Chen, H., 2010, “Recursive Identification for Dynamic Systems With Backlash,” Asian J. Control, 12(1), pp.26–38.
Giri, F., Rochdi, Y., Chaoui, F. Z., and Brouri, A., 2008, “Identification of Hammerstein Systems in Presence of Hysteresis-Backlash and Hysteresis-Relay Nonlinearities,” Automatica, 44(3), pp.767–775. [CrossRef]
Sun, L., Liu, W., and Sano, A., 1999, “Identification of a Dynamical System With Input Nonlinearity,” IEE Proc.: Control Theory Appl., 146(1), pp.41–51. [CrossRef]
Vörös, J., 2010, “Modeling and Identification of Systems With Backlash,” Automatica, 46(2), pp.369–374. [CrossRef]
Giri, F., Rochdi, Y., Elayan, E., Brouri, A., and Chaoui, F. Z., 2008, “Hammerstein Systems Identification in Presence of Hysteresis-Backlash Nonlinearity,” Proceedings of the IFAC World Congress, Seoul, pp.7859–7864.
Giri, F., Rochdi, Y., Gning, J. B., and Chaoui, F. Z., 2010, “Hammerstein Systems Identification in Presence of Nonparametric Backlash Nonlinearities,” Proceedings of the American Control Conference, Baltimore, MD, pp.4516–4521.
Rochdi, Y., Giri, F., Gning, J. B., and Chaoui, F. Z., 2010, “Identification of Block-Oriented Systems in the Presence of Nonparametric Input Nonlinearities of Switch and Backlash Types,” Automatica, 46(5), pp.864–877. [CrossRef]
Rochdi, Y., Giri, F., Gning, J. B., and Chaoui, F. Z., 2010, “Frequency Identification of Wiener Systems Containing Nonparametric Memory Switch Operator,” Proceedings of the American Control Conference, Baltimore, MD, pp.3263–3268.
Vörös, J., 2009, “On Modeling and Identification of Systems With General Backlash,” Proceedings of the 17th International Conference Process Control, Štrbské Pleso, Slovakia, pp.234–237.
Vörös, J., 2005, “Identification of Hammerstein Systems With Time-Varying Piecewise-Linear Characteristics,” IEEE Trans. Circuits Syst., II: Express Briefs, 52(12), pp.865–869. [CrossRef]
Bai, E. W., and Fu, M. Y., 2002, “A Blind Approach to Hammerstein Model Identification,” IEEE Trans. Signal Process., 50(7), pp.1610–1619. [CrossRef]
Bai, E. W., and Li, D., 2004, “Convergence of the Iterative Hammerstein System Identification Algorithm,” IEEE Trans. Autom. Control, 49(11), pp.1929–1940. [CrossRef]
Bai, E. W., Tempo, R., and Liu, Y., 2007, “Identification of IIR Nonlinear Systems Without Prior Structural Information,” IEEE Trans. Autom. Control, 52(3), pp.442–453. [CrossRef]
Bako, L., Mercere, G., Lecoeuche, G., and Lovera, M., 2009, “Recursive Subspace Identification of Hammerstein Models Based on Least Squares Support Vector Machines,” IET Control Theory Appl., 3(9), pp.1209–1216. [CrossRef]
Chen, H. F., 2009, “Recursive System Identification,” Acta Math. Sci., 29B(3), pp.650–672. [CrossRef]
Chen, H. T., Hwang, S. H., and Chang, C. T., 2009, “Iterative Identification of Continuous-Time Hammerstein and Wiener Systems Using a Two-Stage Estimation Algorithm,” Ind. Eng. Chem. Res., 48(3), pp.1495–1510. [CrossRef]
Ding, F., and Chen, T., 2005, “Identification of Hammerstein Nonlinear ARMAX Systems,” Automatica, 41(9), pp.1479–1489. [CrossRef]
Ding, F., Shi, Y., and Chen, T. W., 2006, “Gradient-Based Identification Methods for Hammerstein Nonlinear ARMAX Models,” Nonlinear Dyn., 45(1-2), pp.31–43. [CrossRef]
Ding, F., Liu, X., and Liu, G., 2011, “Identification Methods for Hammerstein Nonlinear Systems,” Digital Signal Process., 21(2), pp.215–238. [CrossRef]
Dolanc, G., and Strmcnik, S., 2005, “Identification of Nonlinear Systems Using a Piecewise-Linear Hammerstein Model,” Syst. Control Lett., 54(2), pp.145–158. [CrossRef]
Giri, F., Chaoui, F. Z., and Rochdi, Y., 2001, “Parameter Identification of a Class of Hammerstein Plants,” Automatica, 37(5), pp.749–756. [CrossRef]
Hasiewicz, Z., and Mzyk, G., 2004, “Combined Parametric-Nonparametric Identification of Hammerstein Systems,” IEEE Trans. Autom. Control, 49(8), pp.1370–1375. [CrossRef]
Hasiewicz, Z., Pawlak, M., and Sliwinski, P., 2005, “Nonparametric Identification of Nonlinearities in Block-Oriented Systems by Orthogonal Wavelets With Compact Support,” IEEE Trans. Circuits Syst. I, 52(2), pp.427–442. [CrossRef]
Janczak, A., 2003, “Neural Network Approach for Identification of Hammerstein Systems,” Int. J. Control, 76(17), pp.1749–1766. [CrossRef]
Jeraj, J., and Mathews, V. J., 2006, “A Stable Adaptive Hammerstein Filter Employing Partial Orthogonalization of the Input Signals,” IEEE Trans. Signal Process., 54(4), pp.1412–1420. [CrossRef]
Kibangou, A. Y., and Favier, G., 2010, “Tensor Analysis-Based Model Structure Determination and Parameter Estimation for Block-Oriented Nonlinear Systems,” IEEE J. Sel. Top. Signal Process., 4(3), pp.514–525. [CrossRef]
Lacy, S. L., and Bernstein, D. S., 2005, “Subspace Identification for Non-Linear Systems With Measured-Input Non-Linearities,” Int. J. Control, 78(12), pp.906–926. [CrossRef]
Liu, Y., and Bai, E. W., 2007, “Iterative Identification of Hammerstein Systems,” Automatica, 43(2), pp.346–354. [CrossRef]
Mzyk, G., 2007, “A Censored Sample Mean Approach to Nonparametric Identification of Nonlinearities in Wiener Systems,” IEEE Trans. Circuits Syst., II: Analog Digital Signal Process., 54(10), pp.897–901. [CrossRef]
Nordsjo, A. E., and Zetterberg, L. H., 2001, “Identification of Certain Time-Varying Nonlinear Wiener and Hammerstein Systems,” IEEE Trans. Signal Process., 49(3), pp.577–592. [CrossRef]
Pupeikis, R., 2006, “On the Identification of Hammerstein Systems Having Saturation-Like Functions With Positive Slopes,” Informatica, 17(1), pp.55–68.
Pupeikis, R., 2010, “On a Time-Varying Parameter Adaptive Self-Organizing System in the Presence of Large Outliers in Observations,” Informatica, 21(1), pp.79–94.
Sliwinski, P., Rozenblit, J., Marcellin, M. W., and Klempous, R., 2009, “Wavelet Amendment of Polynomial Models in Hammerstein Systems Identification,” IEEE Trans. Autom. Control, 54(4), pp.820–825. [CrossRef]
Szabo, Z., Szederkenyi, G., Gaspar, P., Varga, I., Hangos, K. M., and Bokor, J., 2010, “Identification and Dynamic Inversion-Based Control of a Pressurizer at the Paks NPP,” Control Eng. Pract., 18(5), pp.554–565. [CrossRef]
Wang, L. Y., Yin, G. G., Zhao, Y., and Zhang, J., 2008, “Identification Input Design for Consistent Parameter Estimation of Linear Systems With Binary-Valued Output Observations,” IEEE Trans. Autom. Control, 53(4), pp.867–880. [CrossRef]
Ljung, L., and Söderström, T., 1983, Theory and Practice of Recursive Identification, MIT Press, Cambridge, MA.
Chidambaram, M., 2001, Computer Control of Processes, CRC Press, New York.


Grahic Jump Location
Fig. 1

General backlash characteristic

Grahic Jump Location
Fig. 2

Cascade systems with general input backlash

Grahic Jump Location
Fig. 3

The original (dashed) and the new (solid) general backlash characteristics—Example 1

Grahic Jump Location
Fig. 4

General backlash parameter estimates—Example 1 (the top-down order of new parameters is mL1, mR1, mR3, mL3, cL = cR, mL2, mR2)

Grahic Jump Location
Fig. 5

Linear system parameter estimates—Example 1 (the top-down order of parameters is b2, a2, b1)

Grahic Jump Location
Fig. 6

The original (dashed) and the new (solid) general backlash characteristics—Example 2

Grahic Jump Location
Fig. 7

General backlash parameter estimates—Example 2 (the top-down order of new parameters is mR3, mL3, mL1, mR1, cR, cL, mL2, mR2)

Grahic Jump Location
Fig. 8

Linear system parameter estimates—Example 2 (the top-down order of parameters is b2, a2, b1)



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In