Research Papers

A Gain-Scheduling Control Approach for Takagi–Sugeno Fuzzy Systems Based on Linear Parameter-Varying Control Theory

[+] Author and Article Information
Yang Liu

Center for Control Theory and
Guidance Technology,
Harbin Institute of Technology,
Harbin, Heilongjiang 150001, China
e-mail: liuyang5264@163.com

Xiaojun Ban

Center for Control Theory and
Guidance Technology,
Harbin Institute of Technology,
Harbin, Heilongjiang 150001, China
e-mail: banxiaojun@hit.edu.cn

Fen Wu

Department of Mechanical and
Aerospace Engineering,
North Carolina State University,
Raleigh, NC 27695
e-mail: fwu@ncsu.edu

H. K. Lam

Department of Informatics,
King's College London,
Strand, London WC2R 2LS, UK
e-mail: hak-keung.lam@kcl.ac.uk

1Corresponding author.

Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received April 27, 2015; final manuscript received October 14, 2015; published online November 16, 2015. Assoc. Editor: Ryozo Nagamune.

J. Dyn. Sys., Meas., Control 138(1), 011008 (Nov 16, 2015) (9 pages) Paper No: DS-15-1194; doi: 10.1115/1.4031914 History: Received April 27, 2015; Revised October 14, 2015

Due to the universal approximation capability of Takagi–Sugeno (T–S) fuzzy models for nonlinear dynamics, many control issues have been investigated based on fuzzy control theory. In this paper, a transformation procedure is proposed to convert fuzzy models into linear fractional transformation (LFT) models. Then, T–S fuzzy systems can be regarded as a special case of linear parameter-varying (LPV) systems which proved useful for nonlinear control problems. The newly established connection between T–S fuzzy models and LPV models provides a new perspective of the control problems for T–S fuzzy systems and facilitates the fuzzy control designs. Specifically, an output feedback gain-scheduling control design approach for T–S fuzzy systems is presented to ensure globally asymptotical stability and optimize H performance of the closed-loop systems. The control synthesis problem is cast as a convex optimization problem in terms of linear matrix inequalities (LMIs). Two examples have been used to illustrate the efficiency of the proposed method.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Ying, H. , 1998, “ Sufficient Conditions on Uniform Approximation of Multivariate Functions by General Takagi-Sugeno Fuzzy Systems With Linear Rule Consequent,” IEEE Trans. Syst., Man Cybern., Part A: Syst. Hum., 28(4), pp. 515–520. [CrossRef]
Takagi, T. , and Sugeno, M. , 1985, “ Fuzzy Identification of Systems and Its Applications to Modeling and Control,” IEEE Trans. Syst., Man Cybern., 15(1), pp. 116–132. [CrossRef]
Tanaka, K. , Ikeda, T. , and Wang, H. O. , 1998, “ Fuzzy Regulators and Fuzzy Observers: Relaxed Stability Conditions and LMI-Based Designs,” IEEE Trans. Fuzzy Syst., 6(2), pp. 250–265. [CrossRef]
Tanaka, K. , and Sugeno, M. , 1992, “ Stability Analysis and Design of Fuzzy Control Systems,” Fuzzy Sets Syst., 45(2), pp. 135–156. [CrossRef]
Wang, H. O. , Tanaka, K. , and Griffin, M. F. , 1996, “ An Approach to Fuzzy Control of Nonlinear Systems: Stability and Design Issues,” IEEE Trans. Fuzzy Syst., 4(1), pp. 14–23. [CrossRef]
Lam, H. K. , and Leung, F. H. , 2010, Stability Analysis of Fuzzy-Model-Based Control Systems: Linear-Matrix-Inequality Approach, Springer-Verlag, Berlin.
Lam, H. K. , Seneviratne, L. D. , and Ban, X. , 2012, “ Fuzzy Control of Nonlinear Systems Using Parameter-Dependent Polynomial Fuzzy Model,” IET Control Theory Appl., 6(11), pp. 1645–1653. [CrossRef]
Lo, J. C. , and Lin, M. L. , 2003, “ Robust H ∞ Nonlinear Control Via Fuzzy Static Output Feedback,” IEEE Trans. Circuits Syst. I: Regular Pap., 50(11), pp. 1494–1502. [CrossRef]
Kau, S. W. , Lee, H. J. , Yang, C. M. , Lee, C. H. , Hong, L. , and Fang, C. H. , 2007, “ Robust H ∞ Fuzzy Static Output Feedback Control of T-S Fuzzy Systems With Parametric Uncertainties,” Fuzzy Sets Syst., 158(2), pp. 135–146. [CrossRef]
Qiu, J. , Feng, G. , and Gao, H. , 2010, “ Fuzzy-Model-Based Piecewise H ∞ Static-Output-Feedback Controller Design for Networked Nonlinear Systems,” IEEE Trans. Fuzzy Syst., 18(5), pp. 919–934. [CrossRef]
Chadli, M. , and Guerra, T. M. , 2012, “ LMI Solution for Robust Static Output Feedback Control of Discrete Takagi-Sugeno Fuzzy Models,” IEEE Trans. Fuzzy Syst., 20(6), pp. 1160–1165. [CrossRef]
Lam, H. K. , and Li, H. , 2013, “ Output-Feedback Tracking Control for Polynomial Fuzzy Systems,” IEEE Trans. Ind. Electron., 60(12), pp. 5830–5840. [CrossRef]
Lo, J. C. , and Lin, M. L. , 2004, “ Observer-Based Robust H ∞ Control for Fuzzy Systems Using Two-Step Procedure,” IEEE Trans. Fuzzy Syst., 12(3), pp. 350–359. [CrossRef]
Tseng, C. S. , and Hwang, C. K. , 2007, “ Fuzzy Observer-Based Fuzzy Control Design for Nonlinear Systems With Persistent Bounded Disturbances,” Fuzzy Sets Syst., 158(2), pp. 164–179. [CrossRef]
Lam, H. K. , Li, H. , and Liu, H. , 2013, “ Stability Analysis and Control Synthesis for a Fuzzy-Observer-Based Controller of Nonlinear Systems: A Fuzzy-Model-Based Control Approach,” IET Control Theory Appl., 7(5), pp. 663–672. [CrossRef]
Li, J. , Wang, H. O. , Niemann, D. , and Tanaka, K. , 2000, “ Dynamic Parallel Distributed Compensation for Takagi-Sugeno Fuzzy Systems: An LMI Approach,” Inf. Sci., 123(3–4), pp. 201–221. [CrossRef]
Han, Z. X. , Feng, G. , Walcott, B. L. , and Ma, J. , 2000, “ Dynamic Output Feedback Controller Design for Fuzzy Systems,” IEEE Trans. Syst., Man, Cybern. Part B, Cybern., 30(1), pp. 204–210. [CrossRef]
Nguang, S. K. , and Shi, P. , 2006, “ Robust H ∞ Output Feedback Control Design for Fuzzy Dynamic Systems With Quadratic D Stability Constrains: An LMI Approach,” Inf. Sci., 176(15), pp. 2161–2191. [CrossRef]
Yoneyama, J. , 2006, “ Robust H ∞ Control Analysis and Synthesis for Takagi-Sugeno General Uncertain Fuzzy Systems,” Fuzzy Sets Syst., 157(16), pp. 2205–2223. [CrossRef]
Guelton, K. , Bouarar, T. , and Manamanni, N. , 2009, “ Robust Dynamic Output Feedback Fuzzy Lyapunov Stabilization of Takagi-Sugeno Systems: A Descriptor Redundancy Approach,” Fuzzy Sets Syst., 160(19), pp. 2796–2811. [CrossRef]
Yang, G. H. , and Dong, J. , 2010, “ Switching Fuzzy Dynamic Output Feedback H ∞ Control for Nonlinear Systems,” IEEE Trans. Syst., Man, Cybern. Part B, Cybern., 40(2), pp. 505–516. [CrossRef]
Tognetti, E. S. , Oliveira, R. C. L. F. , and Peres, P. L. D. , 2012, “ Reduced-Order Dynamic Output Feedback Control of Continuous-Time T-S Fuzzy Systems,” Fuzzy Sets Syst., 207, pp. 27–44. [CrossRef]
Kim, E. , and Lee, H. , 2000, “ New Approaches to Relaxed Quadratic Stability Condition of Fuzzy Control Systems,” IEEE Trans. Fuzzy Syst., 8(5), pp. 523–534. [CrossRef]
Teixiera, M. C. M. , Assuncao, E. , and Avellar, R. G. , 2003, “ On Relaxed LMI-Based Designs for Fuzzy Regulators and Fuzzy Observers,” IEEE Trans. Fuzzy Syst., 11(5), pp. 613–623. [CrossRef]
Tanaka, K. , Hori, T. , and Wang, H. O. , 2003, “ A Multiple Lyapunov Function Approach to Stabilization of Fuzzy Control Systems,” IEEE Trans. Fuzzy Syst., 11(4), pp. 582–589. [CrossRef]
Rugh, W. J. , and Shamma, J. S. , 2000, “ Research on Gain Scheduling,” Automatica, 36(10), pp. 1401–1425. [CrossRef]
Balas, G. J. , Fialho, I. , Packard, A. K. , Renfrow, J. , and Mullaney, C. , 1997, “ On the Design of LPV Controllers for the F-14 Aircraft Lateral-Directional Axis During Powered Approach,” American Control Conference, pp. 123–127.
Apkarian, P. , and Adams, R. , 1998, “ Advanced Gain-Scheduling Techniques for Uncertain Systems,” IEEE Trans. Control Syst. Technol., 6(1), pp. 21–32. [CrossRef]
Wu, F. , Packard, A. , and Balas, G. , 2002, “ Systematic Gain-Scheduling Control Design: A Missile Autopilot Example,” Asian J. Control, 4(3), pp. 341–347. [CrossRef]
Tsourdos, A. , Economou, J. T. , White, B. A. , and Luk, P. C. K. , 2003, “ Control Design for a Mobile Robot: A Fuzzy LPV Approach,” IEEE Conference on Control Applications, pp. 552–557.
Huang, Y. , Sun, C. , Qian, C. , Zhang, R. , and Zhang, J. , 2012, “ Polytopic LPV Gain-Scheduled Control for a Flexible Air-Breathing Hypersonic Vehicle,” 31st Chinese Control Conference, pp. 329–334.
Precup, R. E. , Dragos, C. A. , Preitl, S. , Radac, M. B. , and Petriu, E. M. , 2012, “ Novel Tensor Product Models for Automatic Transmission System Control,” IEEE Syst. J., 6(3), pp. 488–498. [CrossRef]
Hanifzadegan, M. , and Nagamune, R. , 2014, “ Smooth Switching LPV Controller Design for LPV Systems,” Automatica, 50(5), pp. 1481–1488. [CrossRef]
Packard, A. K. , 1994, “ Gain Scheduling Via Linear Fractional Transformations,” Syst. Control Lett., 22(2), pp. 79–92. [CrossRef]
Apkarian, P. , and Gahinet, P. , 1995, “ A Convex Characterization of Gain-Scheduled H ∞ Controllers,” IEEE Trans. Autom. Control, 40(5), pp. 853–864. [CrossRef]
Chilali, M. , and Gahinet, P. , 1996, “ H ∞ Design With Pole Placement Constraints: An LMI Approach,” IEEE Trans. Autom. Control, 41(3), pp. 358–367. [CrossRef]


Grahic Jump Location
Fig. 1

Disturbance attenuation of Example 1: (a) measurement output, (b) control input, and (c) L2 gain

Grahic Jump Location
Fig. 2

Response to the initial condition x(0) = [85 deg 5.73 deg/s]T of Example 1: (a) measurement output and (b) control input

Grahic Jump Location
Fig. 3

Simulation results of Example 2: (a) plant states, (b) output, and (c) control input



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In