Research Papers

A Continuous Robust Antiswing Tracking Control Scheme for Underactuated Crane Systems With Experimental Verification

[+] Author and Article Information
Ning Sun

Assistant Professor
Institute of Robotics and Automatic
Information System,
Tianjin Key Laboratory of Intelligent Robotics,
Nankai University,
Tianjin 300353, China
e-mail: sunn@nankai.edu.cn

Yongchun Fang

Institute of Robotics and Automatic Information System,
Tianjin Key Laboratory of Intelligent Robotics,
Nankai University,
Tianjin 300353, China
e-mail: fangyc@nankai.edu.cn

He Chen

Institute of Robotics and
Automatic Information System,
Tianjin Key Laboratory of Intelligent Robotics,
Nankai University,
Tianjin 300353, China
e-mail: chenh@mail.nankai.edu.cn

Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received January 29, 2015; final manuscript received December 28, 2015; published online February 5, 2016. Assoc. Editor: Zongxuan Sun.

J. Dyn. Sys., Meas., Control 138(4), 041002 (Feb 05, 2016) (12 pages) Paper No: DS-15-1047; doi: 10.1115/1.4032460 History: Received January 29, 2015; Revised December 28, 2015

Disturbances and uncertainties are unfavorable elements that always accompany industrial mechatronic systems including cranes. If not fully considered or properly dealt with, they would badly influence the control system performance and degrade the working efficiency. Though traditional sliding mode control (SMC) methods are powerful to address these issues, they are discontinuous and might bring potential damages to the actuating devices. In addition, most existing methods cannot involve such practical constraints as permitted swing amplitudes, maximum velocity, etc. To resolve these problems, we suggest a novel composite antiswing crane control scheme, which involves time-suboptimal analytical trajectory planning and continuous robust tracking control. More precisely, a new analytical suboptimal trajectory planning algorithm is presented, which can generate analytical swing-free smooth trajectories guaranteeing practical constraints. Then, we design a new nonlinear control law to make the crane follow the planned trajectories with continuous control efforts, ensuring stable asymptotic tracking in the presence of perturbations/uncertainties. As far as we know, this is the first crane control scheme that simultaneously achieves state-constrained time-suboptimal trajectory planning and robust control with continuous control efforts. We implement experiments to examine its practical control performance and robustness as well.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Zhang, Y. , and Yi, J. , 2010, “ Dynamic Modeling and Balance Control of Human/Bicycle Systems,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Montreal, Canada, pp. 1385–1390.
Wang, Z. , Chen, Y. Q. , and Fang, N. , 2004, “ Minimum-Time Swing-Up of a Rotary Inverted Pendulum by Iterative Impulsive Control,” 2004 American Control Conference, Boston, MA, pp. 1335–1340.
Li, Y. , and Liu, Y. , 2006, “ Real-Time Tip-Over Prevention and Path Following Control for Redundant Nonholonomic Mobile Modular Manipulators Via Fuzzy and Neural-Fuzzy Approaches,” ASME J. Dyn. Syst., Meas., Control, 128(4), pp. 753–764. [CrossRef]
Lai, X.-Z. , Pan, C.-Z. , Wu, M. , Yang, S. X. , and Cao, W.-H. , 2014, “ Control of an Underactuated Three-Link Passive-Active-Active Manipulator Based on Three Stages and Stability Analysis,” ASME J. Dyn. Syst., Meas., Control, 137(2), p. 021007. [CrossRef]
Xin, X. , and Liu, Y. , 2013, “ A Set-Point Control for a Two-Link Underactuated Robot With a Flexible Elbow Joint,” ASME J. Dyn. Syst., Meas., Control, 135(5), p. 051016. [CrossRef]
Muske, K. R. , Ashrafiuon, H. , Nersesov, S. , and Nikkhah, M. , 2012, “ Optimal Sliding Mode Cascade Control for Stabilization of Underactuated Nonlinear Systems,” ASME J. Dyn. Syst., Meas., Control, 134(2), p. 021020. [CrossRef]
Cornejo, C. , and Alvarez-Icaza, L. , 2012, “ Passivity Based Control of Under-Actuated Mechanical Systems With Nonlinear Dynamic Friction,” J. Vib. Control, 18(7), pp. 1025–1042. [CrossRef]
Morel, Y. , and Leonessa, A. , 2003, “ Adaptive Nonlinear Tracking Control of an Underactuated Nonminimum Phase Model of a Marine Vehicle Using Ultimate Boundedness,” IEEE Conference on Decision and Control, Maui, HI, pp. 3097–3102.
Papadopoulos, E. , Fragkos, I. , and Tortopidis, I. , 2007, “ On Robot Gymnastics Planning With Non-Zero Angular Momentum,” IEEE International Conference on Robotics and Automation, Roma, Italy, pp. 1443–1448.
Vaughan, J. , Yano, A. , and Singhose, W. , 2008, “ Comparison of Robust Input Shapers,” J. Sound Vib., 315(4–5), pp. 797–815. [CrossRef]
Sorensen, K. , and Singhose, W. , 2008, “ Command-Induced Vibration Analysis Using Input Shaping Principles,” Automatica, 44(9), pp. 2392–2397. [CrossRef]
Singhose, W. , 2009, “ Command Shaping for Flexible Systems: A Review of the First 50 Years,” Int. J. Precis. Eng. Manuf., 10(4), pp. 153–168. [CrossRef]
Sun, N. , Fang, Y. , Zhang, X. , and Yuan, Y. , 2012, “ Transportation Task-Oriented Trajectory Planning for Underactuated Overhead Cranes Using Geometric Analysis,” IET Control Theory Appl., 6(10), pp. 1410–1423. [CrossRef]
Uchiyama, N. , Ouyang, H. , and Sano, S. , 2013, “ Simple Rotary Crane Dynamics Modeling and Open-Loop Control for Residual Load Sway Suppression by Only Horizontal Boom Motion,” Mechatronics, 23(8), pp. 1223–1236. [CrossRef]
Garrido, S. , Abderrahim, M. , Giménez, A. , Diez, R. , and Balaguer, C. , 2008, “ Anti-Swinging Input Shaping Control of an Automatic Construction Crane,” IEEE Trans. Autom. Sci. Eng., 5(3), pp. 549–557. [CrossRef]
Huang, J. , Xie, X. , and Liang, Z. , 2015, “ Control of Bridge Cranes With Distributed-Mass Payload Dynamics,” IEEE/ASME Trans. Mechatronics, 20(1), pp. 481–486. [CrossRef]
Sun, N. , Fang, Y. , Zhang, Y. , and Ma, B. , 2012, “ A Novel Kinematic Coupling-Based Trajectory Planning Method for Overhead Cranes,” IEEE/ASME Trans. Mechatronics, 17(1), pp. 166–173. [CrossRef]
Fliess, M. , Lévine, J. , and Rouchon, P. , 1993, “ Generalized State Variable Representation for a Simplified Crane Description,” Int. J. Control, 58(2), pp. 277–283. [CrossRef]
Fliess, M. , Lévine, J. , Martin, P. , and Rouchon, P. , 1995, “ Flatness and Defect of Non-Linear Systems: Introductory Theory and Examples,” Int. J. Control, 61(6), pp. 1327–1361. [CrossRef]
Kolar, B. , and Schlacher, K. , 2011, “ Flatness Based Control of a Gantry Crane,” 9th IFAC Symposium on Nonlinear Control Systems, Toulouse, France, pp. 487–492.
Boschetti, G. , Caracciolo, R. , Richiedei, D. , and Trevisani, A. , 2014, “ A Non-Time Based Controller for Load Swing Damping and Path-Tracking in Robotic Cranes,” J. Intell. Rob. Syst., 76(2), pp. 201–217. [CrossRef]
Wang, Z. , and Surgenor, B. W. , 2004, “ A Problem With the LQ Control of Overhead Cranes,” ASME J. Dyn. Syst., Meas., Control, 128(2), pp. 436–440. [CrossRef]
Van den Broeck, L. , Diehl, M. , and Swevers, J. , 2011, “ A Model Predictive Control Approach for Time Optimal Point-to-Point Motion Control,” Mechatronics, 21(7), pp. 1203–1212. [CrossRef]
Raimúndez, C. , Barreiro, A. , and Villaverde, A. F. , 2011, “ Damping Injection by Reset Control,” ASME J. Dyn. Syst., Meas., Control, 134(2), p. 024504. [CrossRef]
Yu, W. , Moreno-Armendariz, M. A. , and Rodriguez, F. O. , 2011, “ Stable Adaptive Compensation With Fuzzy CMAC for an Overhead Crane,” Inf. Sci., 181(21), pp. 4895–4907. [CrossRef]
Lee, L.-H. , Huang, C.-H. , Ku, S.-C. , Yang, Z.-H. , and Chang, C.-Y. , 2014, “ Efficient Visual Feedback Method to Control a Three-Dimensional Overhead Crane,” IEEE Trans. Ind. Electron., 61(8), pp. 4073–4083. [CrossRef]
O'Connor, W. J. , 2003, “ A Gantry Crane Problem Solved,” ASME J. Dyn. Syst., Meas., Control, 125(4), pp. 569–576. [CrossRef]
Sarras, I. , Kazi, F. , Ortega, R. , and Banavar, R. , 2010, “ Total Energy-Shaping IDA-PBC Control of the 2D-Spidercrane,” IEEE Conference on Decision and Control, Atlanta, GA, pp. 1122–1127.
Sun, N. , and Fang, Y. , 2012, “ New Energy Analytical Results for the Regulation of Underactuated Overhead Cranes: An End-Effector Motion-Based Approach,” IEEE Trans. Ind. Electron., 59(12), pp. 4723–4734. [CrossRef]
Liu, R. , Li, S. , and Ding, S. , 2012, “ Nested Saturation Control for Overhead Crane Systems,” Trans. Inst. Meas. Control, 34(7), pp. 862–875. [CrossRef]
Yang, J. H. , and Shen, S. H. , 2011, “ Novel Approach for Adaptive Tracking Control of a 3-D Overhead Crane System,” J. Intell. Rob. Syst., 62(1), pp. 59–80. [CrossRef]
Solihin, M. I , Wahyudi , and Legowo, A. , 2010, “ Fuzzy-Tuned PID Anti-Swing Control of Automatic Gantry Crane,” J. Vib. Control, 16(1), pp. 127–145. [CrossRef]
Masoud, Z. N. , and Nayfeh, A. H. , 2003, “ Sway Reduction on Container Cranes Using Delayed Feedback Controller,” Nonlinear Dyn., 34(3–4), pp. 347–358. [CrossRef]
He, W. , and Ge, S. S. , 2014, “ Adaptive Control of a Flexible Crane System With the Boundary Output Constraint,” IEEE Trans. Ind. Electron., 61(8), pp. 4126–4133. [CrossRef]
Sawodny, O. , Aschemann, H. , and Lahres, S. , 2002, “ An Automated Gantry Crane as a Large Workspace Robot,” Control Eng. Pract., 10(12), pp. 1323–1338. [CrossRef]
Schindele, D. , and Aschemann, H. , 2011, “ Fast Nonlinear MPC for an Overhead Travelling Crane,” 18th IFAC World Congress, Milano, Italy, pp. 7963–7968.
Trabia, M. B. , Renno, J. M. , and Moustafa, K. A. F. , 2008, “ Generalized Design of an Anti-Swing Fuzzy Logic Controller for an Overhead Crane With Hoist,” J. Vib. Control, 14(3), pp. 319–346. [CrossRef]
Sano, H. , Sato, K. , Ohishi, K. , and Miyazaki, T. , 2012, “ Robust Design of Vibration Suppression Control System for Crane Using Sway Angle Observer Considering Friction Disturbance,” IEEJ Trans. Ind. Appl., 132(3), pp. 357–365. [CrossRef]
Blajer, W. , and Kołodziejczyk, K. , 2011, “ Improved DAE Formulation for Inverse Dynamics Simulation of Cranes,” Multibody Syst. Dyn., 25(2), pp. 131–141. [CrossRef]
Chen, W. , and Saif, M. , 2008, “ Output Feedback Controller Design for a Class of MIMO Nonlinear Systems Using High-Order Sliding-Mode Differentiators With Application to a Laboratory 3-D Crane,” IEEE Trans. Ind. Electron., 55(11), pp. 3985–3996. [CrossRef]
Sun, N. , Fang, Y. , and Zhang, X. , 2013, “ Energy Coupling Output Feedback Control of 4-DOF Underactuated Cranes With Saturated Inputs,” Automatica, 49(5), pp. 1318–1325. [CrossRef]
Zhao, Y. , and Gao, H. , 2012, “ Fuzzy-Model-Based Control of an Overhead Crane With Input Delay and Actuator Saturation,” IEEE Trans. Fuzzy Syst., 20(1), pp. 181–186. [CrossRef]
Yu, X. , and Kaynak, O. , 2009, “ Sliding-Mode Control With Soft Computing: A Survey,” IEEE Trans. Ind. Electron., 56(9), pp. 3275–3285. [CrossRef]
Xu, J.-X. , Guo, Z.-Q. , and Lee, T. H. , 2014, “ Design and Implementation of Integral Sliding Mode Control on an Underactuated Two-Wheeled Mobile Robot,” IEEE Trans. Ind. Electron., 61(7), pp. 3671–3681. [CrossRef]
Liu, R. , and Li, S. , 2014, “ Suboptimal Integral Sliding Mode Controller Design for a Class of Affine Systems,” J. Optim. Theory Appl., 161(3), pp. 877–904. [CrossRef]
Wang, W. , Yi, J. , Zhao, D. , and Liu, D. , 2004, “ Design of a Stable Sliding-Mode Controller for a Class of Second-Order Underactuated Systems,” IEE Control Theory Appl., 151(6), pp. 683–690. [CrossRef]
Bartolini, G. , Pisano, A. , and Usai, E. , 2002, “ Second-Order Sliding-Mode Control of Container Cranes,” Automatica, 38(10), pp. 1783–1790. [CrossRef]
Lee, H. H. , 2004, “ A New Design Approach for the Anti-Swing Trajectory Control of Overhead Cranes With High-Speed Hoisting,” Int. J. Control, 77(10), pp. 931–940. [CrossRef]
Lee, H. H. , Liang, Y. , and Segura, D. , 2006, “ A Sliding-Mode Antiswing Trajectory Control for Overhead Cranes With High-Speed Load Hoisting,” ASME J. Dyn. Syst., Meas., Control, 128(4), pp. 842–845. [CrossRef]
Ngo, Q. H. , and K.-S. Hong , 2012, “ Sliding-Mode Antisway Control of an Offshore Container Crane,” IEEE/ASME Trans. Mechatronics, 17(2), pp. 201–209. [CrossRef]
Ngo, Q. H. , and K.-S. Hong , 2012, “ Adaptive Sliding Mode Control of Container Cranes,” IET Control Theory Appl., 6(5), pp. 662–668. [CrossRef]
M.-S. Park , Chwa, D. , and Eom, M. , 2014, “ Adaptive Sliding-Mode Antisway Control of Uncertain Overhead Cranes With High-Speed Hoisting Motion,” IEEE Trans. Fuzzy Syst., 22(5), pp. 1262–1271. [CrossRef]
Vázquez, C. , Collado, J. , and Fridman, L. , 2013, “ Control of a Parametrically Excited Crane: A Vector Lyapunov Approach,” IEEE Trans. Control Syst. Technol., 21(6), pp. 2332–2340. [CrossRef]
Tuan, L. A. , Lee, S.-G. , Ko, D. H. , and Nho, L. C. , 2014, “ Combined Control With Sliding Mode and Partial Feedback Linearization for 3D Overhead Cranes,” Int. J. Robust Nonlinear Control, 24(18), pp. 3372–3386. [CrossRef]
Almutairi, N. B. , and Zribi, M. , 2009, “ Sliding Mode Control of a Three-Dimensional Overhead Crane,” J. Vib. Control, 15(11), pp. 1679–1730. [CrossRef]
Moreno, J. A. , and Osorio, M. , 2012, “ Strict Lyapunov Functions for the Super-Twisting Algorithm,” IEEE Trans. Autom. Control, 57(4), pp. 1035–1040. [CrossRef]
Shevitz, D. , and Paden, B. , 1994, “ Lyapunov Stability Theory of Nonsmooth Systems,” IEEE Trans. Autom. Control, 39(9), pp. 1910–1914. [CrossRef]
Makkar, C. , Hu, G. , Sawyer, W. G. , and Dixon, W. E. , 2007, “ Lyapunov-Based Tracking Control in the Presence of Uncertain Nonlinear Parameterizable Friction,” IEEE Trans. Autom. Control, 52(10), pp. 1988–1994. [CrossRef]
Xian, B. , Dawson, D. , de Queiroz, M. S. , and Chen, J. , 2004, “ A Continuous Asymptotic Tracking Control Strategy for Uncertain Nonlinear Systems,” IEEE Trans. Autom. Control, 49(7), pp. 1206–1211. [CrossRef]
Dupree, K. , Patre, P. M. , Wilcox, Z. D. , and Dixon, W. E. , 2011, “ Asymptotic Optimal Control of Uncertain Nonlinear Euler–Lagrange Systems,” Automatica, 47(1), pp. 99–107. [CrossRef]
Slotine, J. J. E. , and Li, W. , 1991, Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs, NJ.
Filippov, A. F. , 1964, “ Differential Equations With Discontinuous Right-Hand Side,” Am. Math. Soc. Transl., 42(2), pp. 199–231.
Fischer, N. , Kamalapurkar, R. , and Dixon, W. E. , 2013, “ LaSalle-Yoshizawa Corollaries for Nonsmooth Systems,” IEEE Trans. Autom. Control, 58(9), pp. 2333–2338. [CrossRef]
Paden, B. , and Sastry, S. , 1987, “ A Calculus for Computing Filippov's Differential Inclusion With Application to the Variable Structure Control of Robot Manipulators,” IEEE Trans. Circuits Syst., CAS-34(1), pp. 73–82. [CrossRef]


Grahic Jump Location
Fig. 1

Schematic illustration for a crane system

Grahic Jump Location
Fig. 2

Schematic diagram for the proposed control scheme

Grahic Jump Location
Fig. 6

The used crane experiment testbed

Grahic Jump Location
Fig. 12

Experiment group 2: scenarios 1–3

Grahic Jump Location
Fig. 13

Experiment group 2: scenario 4

Grahic Jump Location
Fig. 7

The proposed method in experiment group 1: x(t), θ(t), and Fa(t)

Grahic Jump Location
Fig. 3

Simulation results for case 1: x(t), θ(t), and Fa(t)

Grahic Jump Location
Fig. 4

Simulation results for case 2: x(t), θ(t), and Fa(t)

Grahic Jump Location
Fig. 5

Simulation results for case 3: x(t), θ(t), and Fa(t)

Grahic Jump Location
Fig. 8

The proposed method in experiment group 1: χ1(t) and χ˙1(t)

Grahic Jump Location
Fig. 9

The EI robust input shaping method [10] in experiment group 1: x(t), θ(t), and Fa(t)

Grahic Jump Location
Fig. 10

The improved SMC method of Almutairi and Zribi [55] in experiment group 1: x(t), θ(t), and Fa(t)

Grahic Jump Location
Fig. 11

The energy-based method [29] in experiment group 1: x(t), θ(t), and Fa(t)



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In