Richard,
J.-P.
, 2003, “Time-Delay Systems: An Overview of Some Recent Advances and Open Problems,” Automatica,
39(10), pp. 1667–1694.

[CrossRef]
Balachandran,
B.
, 2001, “Nonlinear Dynamics of Milling Processes,” Philos. Trans. R. Soc. A,
359(1781), pp. 793–819.

[CrossRef]
Van Wiggeren,
G. D.
, and
Roy,
R.
, 1998, “Communication With Chaotic Lasers,” Science,
279(5354), pp. 1198–1200.

[CrossRef] [PubMed]
Nise,
N. S.
, 2000, Control Systems Engineering, 3rd ed.,
Wiley,
New York.

Insperger,
T.
, and
Stépán,
G.
, 2007, “Act-and-Wait Control Concept for Discrete-Time Systems With Feedback Delay,” IET Control Theory Appl.,
1(3), pp. 553–557.

[CrossRef]
Yi,
S.
,
Nelson,
P. W.
, and
Ulsoy,
A. G.
, 2010, Time-Delay Systems: Analysis and Control Using the Lambert W Function,
World Scientific,
Hackensack, NJ.

Yi,
S.
,
Nelson,
P. W.
, and
Ulsoy,
A. G.
, 2010, “Eigenvalue Assignment Via the Lambert W Function for Control of Time-Delay Systems,” J. Vib. Control,
16(7–8), pp. 961–982.

[CrossRef]
Lavaei,
J.
,
Sojoudi,
S.
, and
Murray,
R. M.
, 2010, “Simple Delay-Based Implementation of Continuous-Time Controllers,” American Control Conference (ACC), Baltimore, MD, June 30–July 2, pp. 5781–5788.

Orosz,
G.
,
Moehlis,
J.
, and
Murray,
R. M.
, 2010, “Controlling Biological Networks by Time-Delayed Signals,” Philos. Trans. R. Soc. A,
368(1911), pp. 439–454.

[CrossRef]
Bekiaris-Liberis,
N.
,
Jankovic,
M.
, and
Krstic,
M.
, 2013, “Adaptive Stabilization of LTI Systems With Distributed Input Delay,” Int. J. Adapt. Control Signal Process.,
27(1–2), pp. 46–65.

[CrossRef]
Michiels,
W.
,
Engelborghs,
K.
,
Vansevenant,
P.
, and
Roose,
D.
, 2002, “Continuous Pole Placement for Delay Equations,” Automatica,
38(5), pp. 747–761.

[CrossRef]
Michiels,
W.
,
Vyhlídal,
T.
, and
Zítek,
P.
, 2010, “Control Design for Time-Delay Systems Based on Quasi-Direct Pole Placement,” J. Process Control,
20(3), pp. 337–343.

[CrossRef]
Vyhlídal,
T.
,
Michiels,
W.
, and
McGahan,
P.
, 2010, “Synthesis of Strongly Stable State-Derivative Controllers for a Time-Delay System Using Constrained Non-Smooth Optimization,” IMA J. Math. Control Inf.,
27(4), pp. 437–455.

[CrossRef]
Niu,
J.
,
Ding,
Y.
,
Zhu,
L.
, and
Ding,
H.
, 2015, “Eigenvalue Assignment for Control of Time-Delay Systems Via the Generalized Runge–Kutta Method,” ASME J. Dyn. Syst. Meas. Control,
137(9), p. 091003.

[CrossRef]
Burke,
J. V.
,
Lewis,
A. S.
, and
Overton,
M. L.
, 2005, “A Robust Gradient Sampling Algorithm for Nonsmooth, Nonconvex Optimization,” SIAM J. Optim.,
15(3), pp. 751–779.

[CrossRef]
Vanbiervliet,
J.
,
Verheyden,
K.
,
Michiels,
W.
, and
Vandewalle,
S.
, 2008, “A Nonsmooth Optimisation Approach for the Stabilisation of Time-Delay Systems,” ESAIM: Control, Optim. Calculus Var.,
14(3), pp. 478–493.

[CrossRef]
Yi,
S.
,
Nelson,
P. W.
, and
Ulsoy,
A. G.
, 2013, “Proportional-Integral Control of First-Order Time-Delay Systems Via Eigenvalue Assignment,” IEEE Trans. Control Syst. Technol.,
21(5), pp. 1586–1594.

[CrossRef]
Wei,
F.
,
Bachrathy,
D.
,
Orosz,
G.
, and
Ulsoy,
A. G.
, 2014, “Spectrum Design Using Distributed Delay,” Int. J. Dyn. Control,
2(2), pp. 234–246.

[CrossRef]
Asl,
F. M.
, and
Ulsoy,
A. G.
, 2003, “Analysis of a System of Linear Delay Differential Equations,” ASME J. Dyn. Syst. Meas. Control,
125(2), pp. 215–223.

[CrossRef]
Jarlebring,
E.
, and
Damm,
T.
, 2007, “The Lambert W Function and the Spectrum of Some Multidimensional Time-Delay Systems,” Automatica,
43(12), pp. 2124–2128.

[CrossRef]
Yi,
S.
,
Nelson,
P. W.
, and
Ulsoy,
A. G.
, 2007, “Survey on Analysis of Time Delayed Systems Via the Lambert W Function,” Dyn. Contin., Discrete Impulsive Syst., Ser. A: Math. Anal.,
14(S2), pp. 296–301.

Wahi,
P.
, and
Chatterjee,
A.
, 2005, “Asymptotics for the Characteristic Roots of Delayed Dynamic Systems,” ASME J. Appl. Mech.,
72(4), pp. 475–483.

[CrossRef]
Vyasarayani,
C. P.
, 2012, “Galerkin Approximations for Higher Order Delay Differential Equations,” ASME J. Comput. Nonlinear Dyn.,
7(3), p. 031004.

[CrossRef]
Sadath,
A.
, and
Vyasarayani,
C. P.
, 2015, “Galerkin Approximations for Stability of Delay Differential Equations With Distributed Delays,” ASME J. Comput. Nonlinear Dyn.,
10(6), p. 061024.

[CrossRef]
Kalmár-Nagy,
T.
, 2009, “Stability Analysis of Delay-Differential Equations by the Method of Steps and Inverse Laplace Transform,” Differ. Equations Dyn. Syst.,
17(1–2), pp. 185–200.

[CrossRef]
Insperger,
T.
, and
Stépán,
G.
, 2011, Semi-Discretization for Time-Delay Systems: Stability and Engineering Applications,
Springer,
New York.

Wahi,
P.
, and
Chatterjee,
A.
, 2005, “Galerkin Projections for Delay Differential Equations,” ASME J. Dyn. Syst. Meas. Control,
127(1), pp. 80–87.

Butcher,
E. A.
,
Ma,
H.
,
Bueler,
E.
,
Averina,
V.
, and
Szabo,
Z.
, 2004, “Stability of Linear Time-Periodic Delay-Differential Equations Via Chebyshev Polynomials,” Int. J. Numer. Methods Eng.,
59(7), pp. 895–922.

[CrossRef]
Breda,
D.
,
Maset,
S.
, and
Vermiglio,
R.
, 2005, “Pseudospectral Differencing Methods for Characteristic Roots of Delay Differential Equations,” SIAM J. Sci. Comput.,
27(2), pp. 482–495.

[CrossRef]
Wu,
Z.
, and
Michiels,
W.
, 2012, “Reliably Computing All Characteristic Roots of Delay Differential Equations in a Given Right Half Plane Using a Spectral Method,” J. Comput. Appl. Math.,
236(9), pp. 2499–2514.

[CrossRef]
Mann,
B. P.
, and
Patel,
B. R.
, 2010, “Stability of Delay Equations Written as State Space Models,” J. Vib. Control,
16(7–8), pp. 1067–1085.

[CrossRef]
Khasawneh,
F. A.
, and
Mann,
B. P.
, 2011, “A Spectral Element Approach for the Stability of Delay Systems,” Int. J. Numer. Methods Eng.,
87(6), pp. 566–592.

[CrossRef]
Sun,
J.-Q.
, 2009, “A Method of Continuous Time Approximation of Delayed Dynamical Systems,” Commun. Nonlinear Sci. Numer. Simul.,
14(4), pp. 998–1007.

[CrossRef]
Song,
B.
, and
Sun,
J.-Q.
, 2011, “Lowpass Filter-Based Continuous-Time Approximation of Delayed Dynamical Systems,” J. Vib. Control,
17(8), pp. 1173–1183.

[CrossRef]
Koto,
T.
, 2004, “Method of Lines Approximations of Delay Differential Equations,” Comput. Math. Appl.,
48(1–2), pp. 45–59.

[CrossRef]
Engelborghs,
K.
, and
Roose,
D.
, 2002, “On Stability of LMS Methods and Characteristic Roots of Delay Differential Equations,” SIAM J. Numer. Anal.,
40(2), pp. 629–650.

[CrossRef]
Vyasarayani,
C. P.
,
Subhash,
S.
, and
Kalmár-Nagy,
T.
, 2014, “Spectral Approximations for Characteristic Roots of Delay Differential Equations,” Int. J. Dyn. Control,
2(2), pp. 126–132.

[CrossRef]
Sadath,
A.
, and
Vyasarayani,
C. P.
, 2015, “Galerkin Approximations for Stability of Delay Differential Equations With Time Periodic Coefficients,” ASME J. Comput. Nonlinear Dyn.,
10(2), p. 021011.

[CrossRef]
Sadath,
A.
, and
Vyasarayani,
C. P.
, 2015, “Galerkin Approximations for Stability of Delay Differential Equations With Time Periodic Delays,” ASME J. Comput. Nonlinear Dyn.,
10(6), p. 061008.

[CrossRef]
Vyhlídal,
T.
, and
Zítek,
P.
, 2014, “QPmR—Quasi-Polynomial Root-Finder: Algorithm Update and Examples,” Delay Systems: From Theory to Numerics and Applications. Advances in Delays and Dynamics,
T. Vyhlídal
,
J.-F. Lafay
, and
R. Sipahi
, eds. Vol.
1,
Springer, Cham, Switzerland.

Breda,
D.
,
Maset,
S.
, and
Vermiglio,
R.
, 2015, Stability of Linear Delay Differential Equations: A Numerical Approach With MATLAB,
Springer,
New York.

Apkarian,
J.
,
Lévis,
M.
, and
Martin,
P.
, 2016, “Instructor Workbook: QUBE-Servo 2 Experiment for MATLAB/Simulink Users,” Quanser, Markham, ON, Canada, Report No. v 1.0.

Apkarian,
J.
,
Karam,
P.
, and
Lévis,
M.
, 2012, “Student Workbook: Inverted Pendulum Experiment for LabVIEW Users,” Quanser, Markham, ON, Canada, Report No. v 1.1.