0
Research Papers

Position Control of Pneumatic System Using High Gain and Backstepping Controllers

[+] Author and Article Information
S. Hajji

Université de Sfax,
Ecole nationale d'Ingénieurs de Sfax,
Laboratoire des Sciences et Techniques de
l'Automatique et de l'informatique industrielle,
LR11ES50,
Sfax 3038, Tunisie
e-mail: hjjisfin@yahoo.fr

A. Ayadi

Université de Sfax,
Ecole nationale d'Ingénieurs de Sfax,
Laboratoire des Sciences et Techniques de
l'Automatique et de l'informatique industrielle,
LR11ES50,
Sfax 3038, Tunisie
e-mail: ayadiassil@yahoo.fr

M. Smaoui

Laboratoire Ampere,
UMR CNRS 5005,
INSA-Lyon,
Université de Lyon,
Villeurbanne Lyon F-69621, France
e-mail: mohamed.smaoui@insa-lyon.fr

T. Maatoug

Université de Sfax,
Ecole nationale d'Ingénieurs de Sfax,
Laboratoire des Sciences et Techniques de
l'Automatique et de l'informatique industrielle,
LR11ES50,
Sfax 3038, Tunisie
e-mail: maatougtarak@yahoo.fr

M. Farza

Laboratoire d'Automatique de Caen,
ENSICAEN,
Université de Caen,
Caen 14032, France
e-mail: mondher.farza@greyc.ensicaen.fr

M. M'saad

Laboratoire d'Automatique de Caen,
ENSICAEN,
Université de Caen,
Caen 14032, France
e-mail: mohammed.msaad@ensicaen.fr

Contributed by the Dynamic Systems Division of ASME for publication in the JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT,AND CONTROL. Manuscript received September 6, 2017; final manuscript received February 22, 2019; published online March 25, 2019. Editor: Joseph Beaman.

J. Dyn. Sys., Meas., Control 141(8), 081001 (Mar 25, 2019) (10 pages) Paper No: DS-17-1447; doi: 10.1115/1.4043026 History: Received September 06, 2017; Revised February 22, 2019

This paper investigates the applicability of two state feedback controllers for a class of uniformly controllable and observable nonlinear systems. The first one is based on an appropriate high gain control principle that has been developed by duality from the high gain observer principle. The state feedback control gain is particularly provided by a synthesis function satisfying a well-defined condition, leading thereby to a unification of the high gain control designs. The second one is a backstepping controller that has been developed from a suitable combination of the backstepping control approach bearing in mind the high gain control principle pursued for the first controller design. A common engineering design feature that is worth to be mentioned consists in properly formulating their underlying control problems as a regulation problem involving a suitable reference model with respect to the structure of the system as well as the control design principle under consideration. Of fundamental interest, the involved reference model is systematically derived thanks to the flatness and backstepping principles using an appropriate Lyapunov approach. An experimental evaluation is carried out to illustrate the efficiency of the proposed nonlinear controllers.

FIGURES IN THIS ARTICLE
<>
Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Smaoui, M. , Brun, X. , and Thomasset, D. , 2006, “ A Study on Tracking Position Control of an Electropneumatic System Using Backstepping Design,” Control Eng. Pract., 14(8), pp. 923–933. [CrossRef]
Turki, K. , Smaoui, M. , Thomasset, D. , Mnif, F. , and Derbel, N. , 2008, “ Nonlinear Passivity Based Control Law With Application to Electropneumatic System,” 17th International Federation of Automatic Control World Congress, Seoul, South Korea, July 6–11, pp. 1827–1832.
Girin, A. , Plestan, F. , Glumineau, A. , and Brun, X. , 2009, “ High Order Sliding Mode Controllers of an Electropneumatic Actuator: Application to an Aeronautic Benchmark,” IEEE Trans. Control Syst. Technol., 17(3), pp. 633–645. [CrossRef]
Ameur, O. , Massioni, P. , Scorletti, G. , Brun, X. , and Smaoui, M. , 2016, “ Lyapunov Stability Analysis of Switching Controllers in Presence of Sliding Modes and Parametric Uncertainties With Application to Pneumatic Systems,” IEEE Trans. Control Syst. Technol., 24(6), pp. 1953–1964. [CrossRef]
Ayadi, A. , Hajji, S. , Smaoui, M. , Chaari, A. , and Farza, M. , 2017, “ Experimental Sensorless Control for Electropneumatic System Based on High Gain Observer and Adaptive Sliding Mode Control,” Int. J. Adv. Manuf. Technol., 93(9–12), pp. 4075–4088. [CrossRef]
Ayadi, A. , Smaoui, M. , Aloui, S. , Hajji, S. , and Farza, M. , 2018, “ Adaptive Sliding Mode Control With Moving Surface: Experimental Validation for Electropneumatic System,” Mech. Syst. Signal Process., 109, pp. 27–44. [CrossRef]
Shearer, J. L. , 1956, “ Study of Pneumatic Processes in the Continuous Control of Motion With Compressed Air—I,” Trans. ASME, 78, pp. 233–242.
Shearer, J. L. , 1956, “ Study of Pneumatic Processes in the Continuous Control of Motion With Compressed Air—II,” Trans. ASME, 78, pp. 243–249.
Farza, M. , M'Saad, M. , and Sekher, M. , 2005, “ A Set of Observers for a Class of Nonlinear Systems,” International Federation of Automatic Control World Congress, Prague, Czech Republic, July 3–8.
Seshagiri, S. , and Khalil, H. , 1996, “ Robust Output Feedback Regulation of Minimum-Phase Nonlinear Systems Using Conditional Integrators,” Automatica, 41(1), pp. 43–54.
Hajji, S. , Chaari, A. , M'Saad, M. , and Farza, M. , 2007, “ Output Feedback Controller for a Class of Nonlinear Systems,” European Control Conference (ECC), Kos, Greece, July 2–5, pp. 3831–3837.
Hajji, S. , Farza, M. , M'Saad, M. , and Kamoun, M. , 2008, “ Observed-Based Output Feedback Controller for a Class of Nonlinear Systems,” IFAC Conference on Control Systems Design (CSD2008), Seoul, South Korea, July.
Agrawal, S. K. , and Sira-Ramirez, H. , 2004, Differentially Flat Systems, Taylor and Francis Group, Boca Raton, FL.
Fliess, M. , Levine, J. , Martin, P. , and Rouchon, P. , 1999, “ A Lie-Backlund Approach to Equivalence and Flatness of Nonlinear Systems,” IEEE Trans. Autom. Control, 44(5), pp. 922–937. [CrossRef]
Sepulchre, R. , Jankovič, M. , and Kokotovič, P. , 1997, Constructive Nonlinear Control, Springer, London.
Fliess, M. , Levine, J. , Martin, P. , and Rouchon, P. , 1995, “ Flatness and Defect of Nonlinear Systems: Introductory Theory and Examples,” Int. J. Control, 61(6), pp. 1327–1361. [CrossRef]
Isidori, A. , 1995, Nonlinear Control Systems, 3rd ed., Springer, London.
Krstič, M. , Kanellakopoulos, I. , and Kokotovič, P. , 1995, Nonlinear and Adaptive Control Design, Wiley, New York.
Åström, K. J. , 2000, “ Limitations on Control System Performance,” Eur. J. Control, 6(1), pp. 2–20. [CrossRef]
Kanellakopoulos, I. , Kokotovic, P. , and Morse, A. , 1991, “ Systematic Design of Adaptive Controllers for Feedback Linearizable Systems,” IEEE Trans. Autom. Control, 36(11), pp. 1241–11253. [CrossRef]
Besançon, G. , 2000, “ Remarks on Nonlinear Adaptive Observers Design,” Syst. Control Lett., 41(4), pp. 271–280. [CrossRef]
Fliess, M. , and Kupka, I. , 1983, “ A Finiteness Criterion for Nonlinear Input-Output Differential Systems,” SIAM J. Control Optim., 21(5), pp. 721–728. [CrossRef]
Gauthier, J. , Hammouri, H. , and Othman, S. , 1992, “ A Simple Observer for Nonlinear Systems—Application to Bioreactors,” IEEE Trans. Autom. Control, 37(6), pp. 875–880. [CrossRef]
Farza, M. , M'Saad, M. , and Rossignol, L. , 2004, “ Observer Design for a Class of MIMO Nonlinear Systems,” Automatica, 40(1), pp. 135–143. [CrossRef]
Ayadi, A. , Hajji, S. , Smaou, M. , Chaari, A. , and Farza, M. , 2016, “ Dynamic High-Gain Observer to Estimate Pneumatic Actuator Temperatures,” ASME J. Dyn. Syst. Meas. Control, 138(2), p. 024503. [CrossRef]
Belgharbi, M. , Thomasset, D. , Scavarda, S. , and Sesmat, S. , 1999, “ Analytical Model of the Flow Stage of a Pneumatic Servodistributor for Simulation and Nonlinear Control,” Sixth Scandinavian International Conference on Fluid Power, Tampere, Finland, May 26–28, pp. 847–860.
Brun, X. , Belgharbi, M. , Sesmat, S. , Thomasset, D. , and Scavarda, S. , 1999, “ Control of an Electropneumatic Actuator: Comparison Between Some Linear and Non-Linear Control Laws,” Proc. Inst. Mech. Eng., Part I, 213(5), pp. 387–406.
Smaoui, M. , Brun, X. , and Thomasset, D. , 2008, “ High-Order Sliding Mode for an Electropneumatic System: A Robust Differentiator-Controller Design,” Int. J. Robust Nonlinear Control, 18(4–5), pp. 481–501. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Electropneumatic system

Grahic Jump Location
Fig. 2

Electropneumatic system

Grahic Jump Location
Fig. 3

Reference position

Grahic Jump Location
Fig. 4

Experimental results with high gain controller (M =17 kg): (a) position and desired position (m), (b) position error (mm), (c) pressure pP (bar), (d) pressure pN (bar), and (e) control input (V)

Grahic Jump Location
Fig. 5

Experimental results with high gain controller (M =34 kg): (a) position and desired position (m), (b) position error (mm), (c) pressure pP (bar), (d) pressure pN (bar), and (e) control input (V)

Grahic Jump Location
Fig. 6

Experimental results with backstepping controller (M =17 kg): (a) position and desired position (m), (b) position error (mm), (c) pressure pP (bar), (d) pressure pN (bar), and (e) control input (V)

Grahic Jump Location
Fig. 7

Experimental results with backstepping controller(M =34 kg): (a) position and desired position (m), (b) position error (mm), (c) pressure pP (bar), (d) pressure pN (bar), and (e) control input (V)

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In