Abstract

In this paper, a dynamic brake model has been constructed by incorporating the brake rotor's speed and the brake normal force as excitation sources. By introducing two permissible errors (ε1,2), a novel computation algorithm is proposed to reduce the ill-conditioning, arising from the nonlinear friction. Its validation illustrates that the proposed method, using double-changed time-steps and smarter adaptive time-step reduced method, is more reliable than other integral equation solvers with a higher accuracy as well as less computation time. Moreover, the influences of external excitations on the dynamic characteristic of the brake system are also analyzed, and an estimation for the occurrence of unstable vibration is investigated. The results demonstrate the different contributions of the two external excitations on the dynamic characteristic. The brake system has more unstable vibration at a higher brake normal force and a lower brake rotor's speed with small fluctuation. Furthermore, the higher brake rotor's speed could generate more positive damping effect, which could reduce and suppress the occurrence of the sick-slip vibrations. In practice, these instabilities can be minimized by appropriate selection of the two external, which can be adjusted according to the advanced working requirements.

References

References
1.
Kang
,
J.
,
Krousgrill
,
C. M.
, and
Sadeghi
,
F.
,
2009
, “
Wave Pattern Motion and Stick–Slip Limit Cycle Oscillation of a Disc Brake
,”
J. Sound Vib.
,
325
(
3
), pp.
552
564
.10.1016/j.jsv.2009.03.030
2.
Sinou
,
J. J.
,
Dereure
,
O.
,
Mazet
,
G. B.
,
Thouverez
,
F.
, and
Jezequel
,
L.
,
2006
, “
Friction-Induced Vibration for an Aircraft Brake System—Part 1: Experimental Approach and Stability Analysis
,”
Int. J. Mech. Sci.
,
48
(
5
), pp.
536
554
.10.1016/j.ijmecsci.2005.12.002
3.
Wernitz
,
B. A.
, and
Hoffmann
,
N. P.
,
2012
, “
Recurrence Analysis and Phase Space Reconstruction of Irregular Vibration in Friction Brakes: Signatures of Chaos in Steady Sliding
,”
J. Sound Vib.
,
331
(
16
), pp.
3887
3896
.10.1016/j.jsv.2012.04.003
4.
Nacivet
,
S.
, and
Sinou
,
J. J.
,
2017
, “
Modal Amplitude Stability Analysis and Its Application to Brake Squeal
,”
Appl. Acoust.
,
116
, pp.
127
138
.10.1016/j.apacoust.2016.09.010
5.
Khabou
,
M.
,
Bouchaala
,
N.
,
Chaari
,
F.
,
Fakhfakh
,
T.
, and
Haddar
,
M.
,
2011
, “
Study of a Spur Gear Dynamic Behavior in Transient Regime
,”
Mech. Syst. Signal Process.
,
25
(
8
), pp.
3089
3101
.10.1016/j.ymssp.2011.04.018
6.
Liu
,
F. H.
,
Jiang
,
H. J.
, and
Zhu
,
L. Y.
,
2014
, “
Stability and Nonlinear Dynamics Analysis of Automotive Disc Brake
,”
J. Vib. Eng.
,
27
(
6
), pp.
907
914
.https://www.researchgate.net/publication/289422133_Stability_and_nonlinear_dynamics_analysis_of_automotive_disc_brake
7.
Behrendt
,
J.
,
Weiss
,
C.
, and
Hoffmann
,
N. P.
,
2011
, “
A Numerical Study on Stick-Slip Motion of a Brake Pad in Steady Sliding
,”
J. Sound Vib.
,
330
(
4
), pp.
636
651
.10.1016/j.jsv.2010.08.030
8.
Hegde
,
S.
, and
Suresh
,
B.
,
2015
, “
Study of Friction Induced Stick-Slip Phenomenon in a Minimal Disc Brake Model
,”
J. Mech. Eng. Autom.
,
5
(
8
), pp.
100
106
.http://article.sapub.org/10.5923.c.jmea.201502.20.html
9.
Marín
,
F.
,
Alhama
,
F.
,
Meroño
,
P. A.
, and
Moreno
,
J. A.
,
2016
, “
Modelling of Stick–Slip Behaviour in a Girling Brake Using Network Simulation Method
,”
Nonlinear Dyn.
,
84
(
1
), pp.
153
162
.10.1007/s11071-015-2312-x
10.
Heilig
,
J.
, and
Wauer
,
J.
,
2003
, “
Stability of a Nonlinear Brake System at High Operating Speeds
,”
Nonlinear Dyn.
,
34
(
3/4
), pp.
235
247
.10.1023/B:NODY.0000013506.20009.70
11.
Massi
,
F.
,
Berthier
,
Y.
, and
Baillet
,
L.
,
2008
, “
Contact Surface Topography and System Dynamics of Brake Squeal
,”
Wear
,
265
(
11–12
), pp.
1784
1792
.10.1016/j.wear.2008.04.049
12.
Pilipchuk
,
V.
,
Olejnik
,
P.
, and
Awrejcewicz
,
J.
,
2015
, “
Transient Friction-Induced Vibrations in a 2-DOF Model of Brakes
,”
J. Sound Vib.
,
344
, pp.
297
312
.10.1016/j.jsv.2015.01.028
13.
Köppen
,
T.
,
Küpper
,
T.
, and
Makarenkov
,
O.
,
2017
, “
Existence and Stability of Limit Cycles in Control of Anti-Lock Braking Systems With Two Boundaries Via Perturbation Theory
,”
Int. J. Control
,
90
(
5
), pp.
974
989
.10.1080/00207179.2016.1192686
14.
Hsu
,
C. F.
, and
Kuo
,
T. C.
,
2014
, “
Adaptive Exponential-Reaching Sliding-Mode Control for Antilock Braking Systems
,”
Nonlinear Dyn.
,
77
(
3
), pp.
993
1010
.10.1007/s11071-014-1357-6
15.
Sardarmehni
,
T.
,
Rahmani
,
H.
, and
Menhaj
,
M. B.
,
2014
, “
Robust Control of Wheel Slip in Anti-Lock Brake System of Automobiles
,”
Nonlinear Dyn.
,
76
(
1
), pp.
125
138
.10.1007/s11071-013-1115-1
16.
Yoon
,
S. W.
,
Shin
,
M. W.
,
Lee
,
W. G.
, and
Jang
,
H. J. W.
,
2012
, “
Effect of Surface Contact Conditions on the Stick–Slip Behavior of Brake Friction Material
,”
Wear
,
294–295
, pp.
305
312
.10.1016/j.wear.2012.07.011
17.
Wang
,
X.
, and
Barber
,
J. R.
,
2016
, “
Numerical Frictional Algorithm With Implementation of Closed Form Analytical Solutions
,”
Comput. Methods Appl. Mech. Eng.
,
300
(
1
), pp.
643
656
.10.1016/j.cma.2015.12.001
18.
Vrande
,
B. L. V. D.
,
Van Campen
,
D. H. V.
, and
Kraker
,
A. D.
,
1999
, “
An Approximate Analysis of Dry-Friction-Induced Stick-Slip Vibrations by a Smoothing Procedure
,”
Nonlinear Dyn.
,
19
(
2
), pp.
159
171
.10.1023/A:1008306327781
19.
Charroyer
,
L.
,
Chiello
,
O.
, and
Sinou
,
J. J.
,
2020
, “
Estimation of Self-Sustained Vibration for a Finite Element Brake Model Based on the Shooting Method With a Reduced Basis Approximation of Initial Conditions
,”
J. Sound Vib.
,
468
, p.
115050
.10.1016/j.jsv.2019.115050
20.
Charroyer
,
L.
,
Chiello
,
O.
, and
Sinou
,
J. J.
,
2018
, “
Self-Excited Vibrations of a Non-Smooth Contact Dynamical System With Planar Friction Based on the Shooting Method
,”
Int. J. Mech. Sci.
,
144
, pp.
90
101
.10.1016/j.ijmecsci.2018.05.045
21.
Mfoumou
,
G. S.
,
Kenmoé
,
G. D.
, and
Kofané
,
T. C.
,
2019
, “
Computational Algorithms of Time Series for Stick-Slip Dynamics and Time-Delayed Feedback Control of Chaos for a Class of Discontinuous Friction Systems
,”
Mech. Syst. Signal Process.
,
119
, pp.
399
419
.10.1016/j.ymssp.2018.09.034
22.
Andreaus
,
U.
,
Chiaia
,
B.
, and
Placidi
,
L.
,
2013
, “
Soft-Impact Dynamics of Deformable Bodies
,”
Continuum Mech. Thermodyn.
,
25
(
2–4
), pp.
375
398
.10.1007/s00161-012-0266-5
23.
Karnopp
,
D.
,
1985
, “
Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
107
(
1
), pp.
100
103
.10.1115/1.3140698
24.
Pratt
,
T.
, and
Williams
,
R.
,
1981
, “
Non-Linear Analysis of Stick/Slip Motion
,”
J. Sound Vib.
,
74
(
4
), pp.
531
542
.10.1016/0022-460X(81)90417-X
25.
Sepehri
,
N.
,
Sassani
,
F.
,
Lawrence
,
P.
, and
Ghasempoor
,
A.
,
1996
, “
Simulation and Experimental Studies of Gear Backlash and Stick-Slip Friction in Hydraulic Excavator Swing Motion
,”
ASME J. Dyn. Syst. Meas. Control
,
118
(
3
), pp.
463
467
.10.1115/1.2801168
26.
Lee
,
K. S.
,
Han
,
S. E.
, and
Park
,
T.
,
2011
, “
A Simple Explicit Arc-Length Method Using the Dynamic Relaxation Method With Kinetic Damping
,”
Comput. Struct.
,
89
(
1–2
), pp.
216
233
.10.1016/j.compstruc.2010.09.006
27.
Wang
,
X. R.
,
Wang
,
Z. Q.
,
Wang
,
Y. S.
,
Lin
,
T. S.
, and
He
,
P.
,
2017
, “
A Bisection Method for the Milling of NURBS Mapping Projection Curves by CNC Machines
,”
Int. J. Adv. Manuf. Technol.
,
91
(
1–4
), pp.
155
164
.10.1007/s00170-016-9569-1
28.
Koupaei
,
J. A.
,
Hosseini
,
S. M. M.
, and
Ghaini
,
F. M.
,
2016
, “
A New Optimization Algorithm Based on Chaotic Maps and Golden Section Search Method
,”
Eng. Appl. Artif. Intell.
,
50
, pp.
201
214
.10.1016/j.engappai.2016.01.034
29.
Groll
,
G. V.
, and
Ewins
,
D. J.
,
2001
, “
The Harmonic Balance Method With Arc-Length Continuation in Rotor/Stator Contact Problems
,”
J. Sound Vib.
,
241
(
2
), pp.
223
233
.10.1006/jsvi.2000.3298
30.
Seydel
,
R.
,
2010
,
Practical Bifurcation and Stability Analysis
,
Springer
,
Berlin
.
31.
Copilusi
,
C.
,
Ceccarelli
,
M.
, and
Carbone
,
G.
,
2015
, “
Design and Numerical Characterization of a New Leg Exoskeleton for Motion Assistance
,”
Robotica
,
33
(
5
), pp.
1147
1162
.10.1017/S0263574714002069
32.
Liu
,
F. H.
,
Zhang
,
L.
, and
Yu
,
X. H.
,
2017
, “
Stability Investigation of Velocity-Modulated Gear System Using a New Computational Algorithm
,”
Nonlinear Dyn.
,
89
(
2
), pp.
1111
1128
.10.1007/s11071-017-3504-3
33.
Richards
,
J. A.
,
2012
,
Analysis of Periodically Time-Varying Systems
,
Springer
,
Berlin
.
You do not currently have access to this content.