Abstract

This paper reviews the previous research on the methodologies for evaluating structural integrity of wire bonds and die-attachments in power modules. Under power module operation, these parts are subjected to repeated temperature variations which induce repeated thermal stress due to the mismatch in coefficients of thermal expansion (CTE) of the constituent materials. Thus, thermal fatigue phenomena are critical issues for the structural integrity of power modules. In the present paper, we also deal with the evaluation methodologies for thermal fatigue in the temperatures over 200°C, which are expected operational temperatures for wide bandgap semiconductor power modules. The failure models based on the temperature range ΔT widely used in the power electronics community are critically reviewed from a mechanical engineering viewpoint. Detailed discussion is given concerning the superiority of failure models based on the physical quantities such as the inelastic strain range Δεin, the inelastic strain energy density range ΔWin, and the nonlinear fracture mechanics parameter range ΔT* over the conventional ΔT-based failure models. It is also pointed out that the distributed state concept (DSC) approaches based on the unified constitutive modeling and the unified mechanics theory are promising for evaluating the structural integrity of power modules. Two kinds of test methods, a power cycling test (PCT) and a thermal cycling test (TCT), are discussed in the relation to evaluating the lifetimes of wire-liftoff and die attach cracking.

References

References
1.
Wild
,
R. N.
,
1972
, “
Fatigue Properties of Solder Joints
,”
Weld. J.
,
51
(
11
), pp.
521s
526s
.https://app.aws.org/wj/supplement/WJ_1972_11_s521.pdf
2.
Wu
,
W.
,
Held
,
M.
,
Jacob
,
P.
,
Scacco
,
P.
, and
Birolini
,
A.
,
1995
, “
Investigation on the Long Term Reliability of Power IGBT Modules
,”
Proceedings of 1995 International Symposium on Power Semiconductor Devices and ICs
, Yokohama, Japan, May 23–25, pp.
443
448
.10.1109/ISPSD.1995.515079
3.
Held
,
M.
,
Jacob
,
P.
,
Nicoletti
,
G.
,
Scacco
,
P.
, and
Poech
,
M.-H.
,
1999
, “
Fast Power Cycling Test for Insulated Gate Bipolar Transistor Modules in Traction Application
,”
Int. J. Electron.
,
86
(
10
), pp.
1193
1204
.10.1080/002072199132743
4.
Ciappa
,
M.
,
2002
, “
Selected Failure Mechanisms of Modern Power Modules
,”
Microelectron. Reliab.
,
42
(
4–5
), pp.
653
667
.10.1016/S0026-2714(02)00042-2
5.
Yang
,
S.
,
Xiang
,
D.
,
Bryant
,
A.
,
Mawby
,
P.
,
Ran
,
L.
, and
Tavner
,
P.
,
2010
, “
Condition Monitoring for Device Reliability in Power Electronic Converters: A Review
,”
IEEE Trans. Power Electron.
,
25
(
11
), pp.
2734
2752
.10.1109/TPEL.2010.2049377
6.
Yang
,
L.
,
Agyakwa
,
P. A.
, and
Johnson
,
C. M.
,
2013
, “
Physics-of-Failure Lifetime Prediction Models for Wire Bond Interconnects in Power Electronic Modules
,”
IEEE Trans. Device Mater. Reliab.
,
13
(
1
), pp.
9
17
.10.1109/TDMR.2012.2235836
7.
Moeini
,
R.
,
Tricoli
,
P.
,
Hemida
,
H.
, and
Baniotopoulos
,
C.
,
2018
, “
Increasing the Reliability of Wind Turbines Using Condition Monitoring of Semiconductor Devices: A Review
,”
IET Renewable. Power Gener.
,
12
(
2
), pp.
182
189
.10.1049/iet-rpg.2017.0477
8.
Hanif
,
A.
,
Yu
,
Y.
,
DeVoto
,
D.
, and
Khan
,
F.
,
2019
, “
A Comprehensive Review Toward the State-of-Art in Failure and Lifetime Predictions of Power Electronic Devices
,”
IEEE Trans. Power Electron.
,
34
(
5
), pp.
4729
4746
.10.1109/TPEL.2018.2860587
9.
Coffin
,
L. F.
,
1954
, “
A Study of the Effects of Cyclic Thermal Stresses in a Ductile Metal
,”
Trans. ASME
,
76
(
6
), pp.
931
950
.https://www.osti.gov/biblio/4363016-study-effects-cyclic-thermal-stresses-ductile-metal
10.
Manson
,
S. S.
,
1954
, “
Behavior of Materials Under Conditions of Thermal Stress
,” NACA, Washington DC, Report No.
NACA-TN-1170
.https://ntrs.nasa.gov/citations/19930092197
11.
Ramminger
,
S.
,
Seliger
,
N.
, and
Wachutka
,
G.
,
2000
, “
Reliability Model for Al Wire Bonds Subjected to Heel Crack Failures
,”
Microelectron. Reliab.
,
40
(
8–10
), pp.
1521
1525
.10.1016/S0026-2714(00)00139-6
12.
Merkle
,
L.
,
Kaden
,
T.
,
Sonner
,
M.
,
Gademann
,
A.
,
Turki
,
J.
,
Dresbach
,
C.
, and
Petzold
,
M.
,
2008
, “
Mechanical Fatigue Properties of Heavy Aluminum Wire Bonds for Power Applications
,”
Proceedings of Second Electronics Systemintegration Technology Conference
, Greenwich, UK, Sept. 1–4, pp.
1363
1367
.10.1109/ESTC.2008.4684554
13.
Merkle
,
L.
,
Sonner
,
M.
, and
Petzold
,
M.
,
2014
, “
Lifetime Prediction of Thick Aluminum Wire Bonds for Mechanical Cyclic Loads
,”
Microelectron. Reliab.
,
54
(
2
), pp.
417
424
.10.1016/j.microrel.2013.10.009
14.
Celnikier
,
Y.
,
Benabou
,
L.
,
Dupont
,
L.
, and
Coquery
,
G.
,
2011
, “
Investigation of the Heel Crack Mechanism in Al Connections for Power Electronics Modules
,”
Microelectron. Reliab.
,
51
(
5
), pp.
965
974
.10.1016/j.microrel.2011.01.001
15.
Nakajima
,
D.
,
Motoyama
,
K.
,
Masuhara
,
T.
,
Tamura
,
S.
, and
Fujimoto
,
K.
,
2019
, “
The Failure Mode of Wire Bond in Transfer Molded Power Modules
,”
Proceedings of 25th Symposium on Microjoining and Assembly Technology in Elecctronics (Mate 2019)
, Yokohama, Japan, Jan. 29–30, pp.
123
126
.
16.
Choi
,
U. –M.
,
Blaabjerg
,
F.
, and
Jørgensen
,
S.
,
2017
, “
Study on Effect of Junction Temperature Swing Duration on Lifetime of Transfer Molded Power IGBT Modules
,”
IEEE Trans. Power Electron.
,
32
(
8
), pp.
6434
6443
.10.1109/TPEL.2016.2618917
17.
Zeng
,
G.
,
Borucki
,
L.
,
Wenzel
,
O.
,
Schilling
,
O.
, and
Lutz
,
J.
,
2018
, “
First Results of Development of a Lifetime Model for Transfer Molded Discrete Power Devices
,” International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (
PCIM Europe 2018
), Nuremberg, Germany, June 5–7, pp.
706
713
.https://ieeexplore.ieee.org/document/8402917
18.
Kobayashi
,
H.
, and
Terada
,
H.
, “
Mid-Air Explosion of Comet I over the Mediterranean Sea, Failure Knowledge Data Base/100 Selected Cases
,” Association for Study of Failure, Tokyo, Japan.http://www.shippai.org/fkd/en/cfen/CB1071012.html
19.
Ikeda
,
T.
,
Miyazaki
,
N.
,
Kudo
,
K.
,
Arita
,
K.
, and
Yakiyama
,
H.
,
1999
, “
Failure Estimation of Semiconductor Chip During Wire Bonding Process
,”
ASME J. Electron. Packag.
,
121
(
2
), pp.
85
91
.10.1115/1.2792672
20.
Hizukuri
,
M.
, and
Asano
,
T.
,
2000
, “
Measurement of Dynamic Strain During Ultrasonic Au Bump Formation on Si Chip
,”
Jpn. J. Appl. Phys.
,
39
(
Pt. 1 4B
), pp.
2478
2482
.10.1143/JJAP.39.2478
21.
Choi
,
U.-M.
,
Ma
,
K.
, and
Blaabjerg
,
F.
,
2018
, “
Validation of Lifetime Prediction of IGBT modules Based on Linear Damage Accumulation by Means of Superimposed Power Cycling Tests
,”
IEEE Trans. Ind. Electron.
,
65
(
4
), pp.
3520
3529
.10.1109/TIE.2017.2752142
22.
Zhang
,
Y.
,
Wang
,
H.
,
Wang
,
Z.
,
Yang
,
Y.
, and
Blaabjerg
,
F.
,
2017
, “
Impact of Lifetime Model Selections on the Reliability Prediction of IGBT Modules in Modular Multilevel Converters
,”
Proceedings of 2017 IEEE Energy Conversion Congress and Exposition
, Cincinnati, OH, Oct. 1–5, pp.
4202
4207
.10.1109/ECCE.2017.8096728
23.
Yu
,
Q.
,
Shiratori
,
M.
,
Kaneko
,
S.
,
Ishihara
,
T.
, and
Wang
,
S.
,
1998
, “
Analytical and Experimental Hybrid Study on Thermal Fatigue Strength of Electronic Solder Joints (2nd Report, Evaluation by Isothermal Mechanical Fatigue Test)
,”
Trans. JSME (Ser. A)
,
64
(
619
), pp.
558
563
.10.1299/kikaia.64.558
24.
Manson
,
S. S.
,
1966
,
Thermal Stress and Low Cycle Fatigue
,
McGraw-Hill
,
New York
.
25.
Wang
,
H.
,
Ma
,
K.
, and
Blaabjerg
,
F.
,
2012
, “
Design for Reliability of Power Electronic Systems
,” Proceedings of 38th Annual Conference of the IEEE Industrial Electronics Society (
IECIN 2012
), Montreal, QC, Canada, Oct. 25–28, pp.
33
44
.10.1109/IECON.2012.6388833
26.
Bayerer
,
R.
,
Herrmann
,
T.
,
Licht
,
T.
,
Lutz
,
J.
, and
Feller
,
M.
,
2008
, “
Model for Power Cycling Lifetime of IGBT Modules—Various Factors Influencing Lifetime
,”
Proceedings of Fifth International Conference on Integrated Power Systems
, Nuremberg, Germany, Mar. 11–13.https://ieeexplore.ieee.org/document/5755669
27.
Norris
,
K. C.
, and., and
Landzberg
,
A. H.
,
1969
, “
Reliability of Controlled Collapse Interconnections
,”
IBM J. Res. Dev.
,
13
(
3
), pp.
266
271
.10.1147/rd.133.0266
28.
Kovacevic-Badstuebner
,
I. F.
,
Kolar
,
J. W.
, and
Shilling
,
U.
,
2015
, “
Modelling for the Lifetime Prediction of Power Semiconductor Modules
,”
Reliability of Power Electronic Converter System
,
IET
,
London
, pp.
103
140
.10.1049/PBPO080E_ch5
29.
Yang
,
X.
,
Lin
,
Z.
,
Ding
,
J.
, and
Long
,
Z.
,
2019
, “
Lifetime Prediction of IGBT Modules in Suspension Choppers of Medium/Low-Speed Maglev Train Using an Energy-Based Approach
,”
IEEE Trans. Power Electron.
,
34
(
1
), pp.
738
747
.10.1109/TPEL.2018.2812732
30.
Sasaki
,
K.
, and
Iwasa
,
N.
,
2008
, “
Thermal and Structural Simulation Techniques for Estimating Fatigue Life of an IGBT Model
,”
Proceedings of 20th International Symposium on Power Semiconductor Devices and IC's
, Orlando, FL, May 18–22, pp.
181
184
.10.1109/ISPSD.2008.4538928
31.
Matsunaga
,
T.
, and
Uegai
,
Y.
,
2006
, “
Thermal Fatigue Life Evaluation of Aluminum Wire Bonds
,”
Proceedings of First Electronics System Integration Technology Conference
, Dresden, Germany, Sept. 5–7, pp.
726
731
.10.1109/ESTC.2006.280092
32.
Yamada
,
Y.
,
Takaku
,
Y.
,
Yagi
,
Y.
,
Nakagawa
,
I.
,
Atsumi
,
T.
,
Shirai
,
M.
,
Ohnuma
,
I.
, and
Ishida
,
K.
,
2007
, “
Reliability of Wire-Bonding and Solder Joint for High Temperature Operation of Power Semiconductor Device
,”
Microelectron. Reliab.
,
47
(
12
), pp.
2147
2151
.10.1016/j.microrel.2007.07.102
33.
Agyakwa
,
P. A.
,
Corfield
,
M. R.
,
Yang
,
L.
,
Li
,
J. F.
,
Marques
,
V. M. F.
, and
Johnson
,
C. M.
,
2011
, “
Microstructural Evolution of Ultrasonically Bonded High Purity Al Wire During Extended Range Thermal Cycling
,”
Microelectron. Reliab.
,
51
(
2
), pp.
406
415
.10.1016/j.microrel.2010.08.018
34.
Yang
,
L.
,
Agyakwa
,
P. A.
, and
Johnson
,
C. M.
,
2011
, “
A Time-Domain Physics-of-Failure Model for the Lifetime Prediction of Wire Bond Connection
,”
Microelectron. Reliab.
,
51
(
9–11
), pp.
1882
1886
.10.1016/j.microrel.2011.07.052
35.
Morrow
,
J.
,
1965
, “
Cyclic Plastic Strain Energy and Fatigue of Metals
,”
Internal Friction, Damping, and Cyclic Plasticity
, B. Kazan, ed., ASTM International, West Conshohocken, PA, pp.
45
85s
.10.1520/STP43764S
36.
Kanda
,
Y.
,
Kariya
,
Y.
, and
Oto
,
Y.
,
2012
, “
Influence of Cyclic Strain-Hardening Exponent on Fatigue Ductility Exponent for a Sn–Ag–Cu Micro-Solder Joint
,”
J. Electron. Mater.
,
41
(
3
), pp.
580
587
.10.1007/s11664-011-1830-7
37.
Clech
,
J.-P.
,
1997
, “
Solder Reliability Solutions: A PC-Based Design-for-Reliability Tool
,”
Solder. Surf. Mount Technol.
,
9
(
2
), pp.
45
54
.10.1108/09540919710800638
38.
Ciappa
,
M.
,
Carbognani
,
F.
,
Cova
,
P.
, and
Fichtner
,
W.
,
2002
, “
A Novel Thermomechanics-Based Lifetime Prediction Model for Cycle Fatigue Failure Mechanisms in Power Semiconductors
,”
Microelectron. Reliab.
,
42
(
9–11
), pp.
1653
1658
.10.1016/S0026-2714(02)00206-8
39.
Riedel
,
G. J.
,
Schmidt
,
R.
,
Liu
,
C.
,
Beyer
,
H.
, and
Alaperä
,
I.
,
2012
, “
Reliability of Large Area Solder Joints Within IGBT Modules: Numerical Modeling and Experimental Results
,”
Proceedings of Seventh International Conference on Integrated Power Electronics Systems
, Nuremberg, Germany, Mar. 6–8, Paper No. 06.4.https://ieeexplore.ieee.org/document/6170637
40.
Shishido
,
N.
,
Hayama
,
Y.
,
Morooka
,
W.
,
Hagihara
,
S.
, and
Miyazaki
,
N.
,
2019
, “
Application of Nonlinear Fracture Mechanics Parameter to Predicting Wire-Liftoff Lifetime of Power Module at Elevated Temperature
,”
IEEE J. Emerg. Sel. Top. Power Electron.
,
7
(
3
), pp.
1604
1614
.10.1109/JESTPE.2019.2914244
41.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386
.10.1115/1.3601206
42.
Lamba
,
H. S.
,
1975
, “
The J-Integral Applied to Cyclic Loading
,”
Eng. Fract. Mech.
,
7
(
4
), pp.
693
703
.10.1016/0013-7944(75)90025-9
43.
Dowling
,
N. E.
, and
Begley
,
J. A.
,
1976
, “
Fatigue Crack Growth During Gross Plasticity and the J-Integral
,”
Mechanics of Crack Growth
,
J.
Rice
and
P.
Paris
, ed.,
ASTM International
,
West Conshohocken, PA
, pp.
82
103
.10.1520/STP33940S
44.
Wüthrich
,
C.
,
1982
, “
The Extension of the J-Integral Concept to Fatigue Cracks
,”
Int. J. Fract.
,
20
(
2
), pp.
R35
R37
.10.1007/BF01141264
45.
Tanaka
,
K.
,
1983
, “
The Cyclic J-Integral as a Criterion for Fatigue Crack Growth
,”
Int. J. Fract.
,
22
(
2
), pp.
91
104
.10.1007/BF00942715
46.
Kubo
,
S.
,
Yafuso
,
T.
,
Nohara
,
M.
,
Ishimaru
,
T.
, and
Ohji
,
K.
,
1989
, “
Investigation on Path-Integral Expression of the J-Integral Range Using Numerical Simulations of Fatigue Crack Growth
,”
JSME Int. J. (Ser. I)
,
32
(
2
), pp.
237
244
.10.1299/jsmea1988.32.2_237
47.
Atluri
,
S. N.
,
1982
, “
Path-Independent Integrals in Finite Elasticity and Inelasticity, With Body Forces, Inertia, and Arbitrary Crack-Face Conditions
,”
Engng. Fract. Mech.
,
16
(
3
), pp.
341
364
.10.1016/0013-7944(82)90113-8
48.
Brust
,
F. W.
,
McGowan
,
J. J.
, and
Atluri
,
S. N.
,
1986
, “
A Combined Numerical/Experimental Study of Ductile Crack Growth After a Large Unloading, Using T*, J, and CTOA Criteria
,”
Eng. Fract. Mech.
,
23
(
3
), pp.
537
550
.10.1016/0013-7944(86)90161-X
49.
Smelser
,
R. E.
, and
Gurtin
,
M. E.
,
1977
, “
On the J-Integral for Bi-Material Bodies
,”
Int. J. Fract.
,
13
(
3
), pp.
382
384
.10.1007/BF00040155
50.
Banks-Sills
,
L.
, and
Volpert
,
Y.
,
1991
, “
Application of the Cyclic J-Integral to Fatigue Crack Propagation of Al 2024-T351
,”
Engng. Fract. Mech.
,
40
(
2
), pp.
355
370
.10.1016/0013-7944(91)90270-B
51.
Gasiak
,
G.
, and
Rozumek
,
D.
,
2004
, “
ΔJ-Integral Range Estimation for Fatigue Crack Growth Rate Description
,”
Int. J. Fatig
,
26
(
2
), pp.
135
140
. pp.10.1016/S0142-1123(03)00111-7
52.
Shahani
,
A. R.
,
Moayeri Kashani
,
H.
,
Rastegar
,
M.
, and
Botshekanan Dehkordi
,
M.
,
2009
, “
A Unified Model for the Fatigue Crack Growth Rate in Variable Stress Ratio
,”
Fatig. Fract. Eng. Mater. Struct.
,
32
(
2
), pp.
105
118
.10.1111/j.1460-2695.2008.01315.x
53.
Takeda
,
T.
,
Shindo
,
Y.
, and
Narita
,
F.
,
2011
, “
Vacuum Crack Growth Behavior of Austenitic Stainless Steel Under Fatigue Loading
,”
Streng. Mater.
,
43
(
5
), pp.
532
536
.10.1007/s11223-011-9324-7
54.
Božić
,
Ž.
,
Mlikota
,
M.
, and., and
Schmauder
,
S.
,
2011
, “
Application of the ΔK, ΔJ and ΔCTOD Parameters in Fatigue Crack Growth Modelling
,”
Tech. Gazette
,
18
(
3
), pp.
459
466
.https://core.ac.uk/download/pdf/14440251.pdf
55.
Ktari
,
A.
,
Baccar
,
M.
,
Shah
,
M.
,
Haddar
,
N.
,
Ayedi
,
H. F.
, and
Rezai-Aria
,
F.
,
2014
, “
A Crack Propagation Criterion Based on ΔCTOD Measured With 2D-Digital Image Correlation Technique
,”
Fatig. Fract. Eng. Mater. Struct.
,
37
(
6
), pp.
682
694
.10.1111/ffe.12153
56.
Li
,
L.
,
Yang
,
Y. H.
,
Xu
,
Z.
,
Chen
,
G.
, and
Chen
,
X.
,
2014
, “
Fatigue Crack Growth Law of API X80 Pipeline Steel Under Various Stress Ratios Based on J-Integral
,”
Fatig. Fract. Eng. Mater. Struct.
,
37
(
10
), pp.
1124
1135
.10.1111/ffe.12193
57.
Furuhashi
,
I.
, and
Wakai
,
T.
,
1995
, “
Revisions of Fracture Mechanics Parameters Analysis Code CANIS-J(2D)
,” JAEA, Tokai-mura, Japan, Report No. PNC-TN9410
95
080
.
58.
Ridout
,
S.
, and
Bailey
,
C.
,
2007
, “
Review of Methods to Predict Solder Joint Reliability Under Thermo-Mechanical Cycling
,”
Fatig. Fract. Eng. Mater. Struct.
,
30
(
5
), pp.
400
412
.10.1111/j.1460-2695.2006.01065.x
59.
Wong
,
E. H.
,
van Driel
,
W. D.
,
Dasgupta
,
A.
, and
Pecht
,
M.
,
2016
, “
Creep Fatigue Models of Solder Joints: A Critical Review
,”
Microelectron. Reliab.
,
59
(
1
), pp.
1
12
.10.1016/j.microrel.2016.01.013
60.
Yao
,
Y.
,
Long
,
X.
, and
Keer
,
L. M.
,
2017
, “
A Review of Recent Research on the Mechanical Behavior of Lead-Free Solders
,”
ASME Appl. Mech. Rev.
,
69
(
4
), Paper No. 040802.10.1115/1.4037462
61.
Chen
,
G.
,
Zhao
,
X.
, and
Wu
,
H.
,
2017
, “
A Critical Review of Constitutive Models for Solders in Electronic Packaging
,”
Adv. Mech. Eng.
,
9
(
8
), pp.
1
21
.10.1177/1687814017714976
62.
Huang
,
X.
,
Wu
,
W.-F.
, and
Chou
,
P.-L.
,
2012
, “
Fatigue Life and Reliability Prediction of Electronic Packages Under Thermal Cycling Conditions Through FEM Analysis and Acceleration Models
,”
Proceedings of 14th International Conference on Electronic Materials and Packaging
, Macao, China, Dec.
13
16
.10.1109/EMAP.2012.6507914
63.
Salmela
,
O.
,
2007
, “
Acceleration Factors for Lead-Free Solder Materials
,”
IEEE Trans. Comp. Packag. Technol.
,
30
(
4
), pp.
700
707
.10.1109/TCAPT.2007.900076
64.
Dauksher
,
W.
,
2008
, “
A Second-Level SAC Solder-Joint Fatigue-Life Prediction Methodology
,”
IEEE Trans. Device Mater. Reliab.
,
8
(
1
), pp.
168
173
.10.1109/TDMR.2007.912253
65.
Salmela
,
O.
,
Putaala
,
J.
,
Nousiainen
,
O.
,
Uusimäki
,
A.
,
Särkkä
,
J.
, and
Tammenmaa
,
M.
,
2016
, “
Multipurpose Lead-Free Reliability Prediction Model
,”
Proceedings of 2016 Pan Pacific Microelectronics Symposium
, Big Island, HI, Jan.
25
28
.10.1109/PanPacific.2016.7428389
66.
Darveaux
,
R.
, and
Banerji
,
K.
,
1991
, “
Fatigue Analysis of Flip Chip Assemblies Using Thermal Stress Simulations and a Coffin-Manson Relation
,”
Proceedings of 41st Electronic Components and Technology Conference
, Atlanta, GA, May 11–16, pp.
797
805
.10.1109/ECTC.1991.163971
67.
Pang
,
J. H. L.
,
Tan
,
T.-I.
, and
Sitaraman
,
S. K.
,
1998
, “
Thermo-Mechanical Analysis of Solder Joints Fatigue and Creep in a Flip Chip on Board Package Subjected to Temperature Cycling Loading
,”
Proceedings of 48th Electronic Components and Technology Conference
, Seattle, WA, May 25–28, pp.
878
883
.10.1109/ECTC.1998.678811
68.
Schubert
,
A.
,
Dudek
,
R.
,
Auerswald
,
E.
,
Gollhardt
,
A.
,
Michel
,
B.
, and
Reichl
,
H.
,
2003
, “
Fatigue Life Models for SnAgCu and SnPb Solder Joints Evaluated by Experiments and Simulation
,”
Proceedings of 53rd Electronic Components and Technology Conference
, New Orleans, LA, May 27–30, pp.
603
610
.10.1109/ECTC.2003.1216343
69.
Kim
,
I. H.
,
Park
,
T. S.
,
Yang
,
S. Y.
, and
Lee
,
S. B.
,
2005
, “
A Comparative Study of the Fatigue Behavior of SnAgCu and SnPb Solder Joints
,”
Key Engng. Mater.
,
297–300
, pp.
831
836
.10.4028/www.scientific.net/KEM.297-300.831
70.
Karppinen
,
J. S.
,
Li
,
J.
,
Mattila
,
T. T.
, and
Paulasto-Kröckel
,
M.
,
2010
, “
Thermomechanical Reliability Characterization of a Handheld Product in Accelerated Tests and Use Environment
,”
Microelectron. Reliab.
,
50
(
12
), pp.
1994
2000
.10.1016/j.microrel.2010.07.011
71.
Hansen
,
P.
, and
McCluskey
,
P.
,
2007
, “
Failure Models in Power Device Interconnects
,”
Proceedings of 2007 European Conference on Power Electronics and Applications
, Aaborg, Denmark, Sept.
2
5
.10.1109/EPE.2007.4417406
72.
O'Keefe
,
M.
, and
Vlahinos
,
A.
,
2009
, “
Impacts of Cooling Technology on Solder Fatigue for Power Modules in Electric Traction Drive Vehicles
,”
Proceedings of 2009 IEEE Vehicle Power and Propulsion Conference
, Dearborn, MI, Sept. 7–10, pp.
1182
1188
. 10.1109/VPPC.2009.5289717
73.
Barbagallo
,
C.
,
Malgioglio
,
G. L.
,
Petrone
,
G.
, and
Cammarata
,
G.
,
2017
, “
Thermal Fatigue Life Evaluation of SnAgCu Solder Joints in a Multi-Chip Power Module
,”
IOP Conf. Ser.: J. Phys.: Conf. Ser.
,
841
, Paper No. 012014.10.1088/1742-6596/841/1/012014
74.
Cavallaro
,
D.
,
Greco
,
R.
, and
Bazzano
,
G.
,
2018
, “
Effect of Solder Material Thickness on Power MOSFT Reliability by Electro-Thermo-Mechanical Simulations
,”
Microelectron. Reliab.
,
88–90
, pp.
1168
1171
.10.1016/j.microrel.2018.07.082
75.
Darveaux
,
R.
,
1997
, “
Solder Joint Fatigue Life Model
,”
Proceedings of 1997 TMS Annual Meeting
, Orlando, FL, Feb. 10–13, pp.
213
218
.
76.
Amagai
,
M.
, and
Nakao
,
M.
,
1998
, “
Ball Grid Array (BGA) Packages With the Copper Core Solder Balls
,”
Proceedings of 48th Electronic Components and Technology Conference
, Seattle, WA, May 25–28, pp.
692
701
.10.1109/ECTC.1998.678773
77.
Amagai
,
M.
,
1999
, “
Characterization of Chip Scale Packaging Materials
,”
Microelectron. Reliab.
,
39
(
9
), pp.
1365
1377
.10.1016/S0026-2714(99)00059-1
78.
Zahn
,
B. A.
,
2003
, “
Solder Joint Fatigue Life Model Methodology for 63Sn37Pb and 95.5Sn4Ag0.5Cu Materials
,”
Proceedings of 53th Electronic Components and Technology Conference
, New Orleans, LA, May 27–28, pp.
83
94
.10.1109/ECTC.2003.1216261
79.
Thébaud
,
J.-M.
,
Woirgard
,
E.
,
Zardini
,
C.
,
Azzopardi
,
S.
,
Briat
,
O.
, and
Vinassa
,
J.-M.
,
2003
, “
Strategy for Designing Accelerated Aging Tests to Evaluate IGBT Power Modules Lifetime in Real Operation Mode
,”
IEEE Trans. Comp. Packag. Technol.
,
26
(
2
), pp.
429
438
.10.1109/TCAPT.2003.815112
80.
Hu
,
B.
,
Gonzalez
,
J. O.
,
Ran
,
L.
,
Ren
,
H.
,
Zeng
,
Z.
,
Lai
,
W.
,
Gao
,
B.
,
Alatise
,
O.
,
Lu
,
H.
,
Bailey
,
C.
, and
Mawby
,
P.
,
2017
, “
Failure and Reliability Analysis of a SiC Power Module Based on Stress Comparison to a Si Device
,”
IEEE Trans. Device Mater. Reliab.
,
17
(
4
), pp.
727
737
.10.1109/TDMR.2017.2766692
81.
Nakajima
,
Y.
,
Ono
,
K.
, and
Kariya
,
Y.
,
2019
, “
Evaluation of Fatigue Crack Propagation of Sn-5.0Sb/Cu Joint Using Inelastic Strain Energy Density
,”
Mater. Trans.
,
60
(
6
), pp.
876
881
.10.2320/matertrans.MH201813
82.
Hutchinson
,
J. W.
,
1968
, “
Singular Behaviour at the End of a Tensile Crack in a Hardening Material
,”
J. Mech. Phys. Solids
,
16
(
1
), pp.
13
31
.10.1016/0022-5096(68)90014-8
83.
Rice
,
J. R.
, and
Rosengren
,
G. F.
,
1968
, “
Plane Strain Deformation Near a Crack Tip in a Power Law Hardening Material
,”
J. Mech. Phys. Solids
,
16
(
1
), pp.
1
12
.10.1016/0022-5096(68)90013-6
84.
Paris
,
P.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Basic Eng.
,
85
(
4
), pp.
528
533
.10.1115/1.3656900
85.
Déplanque
,
S.
,
Nüchter
,
W.
,
Wunderle
,
B.
,
Schacht
,
R.
, and
Michel
,
B.
,
2006
, “
Lifetime Prediction of SnPb and SnAgCu Solder Joints of Chips on Copper Substrate Based on Crack Propagation FE-Analysis
,” Proceedings of Seventh International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems (
EuroSimuE 2006
), Como, Italy, Apr. 24–26.10.1109/ESIME.2006.1643976
86.
Lu
,
H.
,
Tilford
,
T.
,
Bailey
,
C.
, and
Newcombe
,
D. R.
,
2007
, “
Lifetime Prediction for Power Electronics Module Substrate Mount-Down Solder Interconnect
,”
Proceedings of 2007 International Symposium on High Density Packaging and Microsystem Integration
, Shanghai, China, June
26
28
.10.1109/HDP.2007.4283558
87.
Yin
,
C. Y.
,
Lu
,
H.
,
Musallam
,
M.
,
Bailey
,
C.
, and
Johnson
,
C. M.
,
2010
, “
In-Service Reliability Assessment of Solder Interconnect in Power Electronics Module
,”
Proceedings of 2010 Prognostics and System Health Management Conference
, Macao, China, Jan. 12–14, Paper No. MU3095.10.1109/PHM.2010.5413346
88.
Kostandyan
,
E. E.
, and
Sørensen
,
J. D.
,
2011
, “
Reliability Assessment of Solder Joints in Power Electronic Modules by Crack Damage Model for Wind Turbine Applications
,”
Energies
,
4
(
12
), pp.
2236
2248
.10.3390/en4122236
89.
Mukai
,
M.
,
Hirohata
,
K.
,
Takahashi
,
H.
,
Kawakami
,
T.
, and
Takahashi
,
K.
,
2005
, “
Damage Path Simulation of Solder Joints in QFP
,”
ASME
Paper No. IPACK2005-73297.10.1115/IPACK2005-73297
90.
Tanie
,
H.
,
Terasaki
,
T.
, and
Naka
,
Y.
,
2005
, “
A New Method for Evaluating Fatigue Life of Micro-Solder Joints in Semiconductor Structures
,”
ASME
Paper No. IPACK2005-73331.10.1115/IPACK2005-73331
91.
Anzawa
,
T.
,
Yu
,
Q.
,
Shibutani
,
T.
, and
Shiratori
,
M.
,
2007
, “
Reliability Evaluation for Power Electronics Devices Using Electrical Thermal and Mechanical Analysis
,”
Proceedings of Nineth Electronics Packaging Technology Conference
, Singapore, Dec. 10–12, pp.
94
99
.10.1109/EPTC.2007.4469833
92.
Shinohara
,
K.
, and
Yu
,
Q.
,
2010
, “
Reliability Evaluation of Power Semiconductor Devices Using Coupled Analysis Simulation
,”
Proceedings of 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, Las Vegas, NV, June
2
5
.10.1109/ITHERM.2010.5501267
93.
Darveaux
,
R.
,
2000
, “
Effect of Simulation Methodology on Solder Joint Crack Growth Correlation
,”
Proceedings of 50th Electronic Components and Technology Conference
, Las Vegas, NV, May 21–24, pp.
1048
1058
.10.1109/ECTC.2000.853299
94.
Darveaux
,
R.
,
2002
, “
Effect of Simulation Methodology on Solder Joint Crack Growth Correlation and Fatigue Life Prediction
,”
ASME J. Electron. Packag.
,
124
(
3
), pp.
147
154
.10.1115/1.1413764
95.
Zhang
,
L.
,
Sitaraman
,
R.
,
Patwardhan
,
V.
,
Nguyen
,
L.
, and
Kelkar
,
N.
,
2003
, “
Solder Joint Reliability Model With Modified Darveaux's Equations for the Micro SMD Wafer Level-Chip Scale Package Family
,”
Proceedings of 53rd Electronic Components and Technology Conference
, New Orleans, LA, May 27–30, pp.
572
577
.10.1109/ECTC.2003.1216338
96.
Hossain
,
M. M.
,
Jagarkal
,
S. G.
,
Agonafer
,
D.
,
Lulu
,
M.
, and
Reh
,
S.
,
2007
, “
Design Optimization and Reliability of PWR Level Electronic Package
,”
ASME J. Electron. Packag.
,
129
(
1
), pp.
9
18
.10.1115/1.2429704
97.
Bai
,
J. G.
,
Calata
,
J. N.
, and
Lu
,
G.-Q.
,
2006
, “
Discussion on the Reliability Issues of Solder-Bump and Direct-Solder Bonded Power Device Packages Having Double-Sided Cooling Capability
,”
ASME J. Electron. Packag.
,
128
(
3
), pp.
208
214
.10.1115/1.2229218
98.
Xie
,
X.
,
Bi
,
X.
, and
Li
,
G.
,
2009
, “
Thermal-Mechanical Fatigue Reliability of PbSnAg Solder Layer of Die Attachment for Power Electronic Devices
,”
Proceedings of Tenth International Conference on Electronic Packaging Technology and High Density Packaging
, Beijing, China, Aug. 10–13, pp.
1181
1185
.10.1109/ICEPT.2009.5270615
99.
Chen
,
H.-C.
,
Guo
,
S.-W.
, and
Liao
,
H.-K.
,
2018
, “
The Solder Life Prediction Model of Power Module Under Thermal Cycling Test (TCT)
,”
Proceedings of 13th International Microsystems, Packaging, Assembly and Circuit Technology Conference
, Taipei, Taiwan, Oct. 24–26, pp.
104
107
.10.1109/IMPACT.2018.8625778
100.
Kimura
,
R.
,
Kariya
,
Y.
,
Mizumura
,
N.
, and
Sasaki
,
K.
,
2018
, “
Effect of Sintering Temperature on Fatigue Crack Propagation Rate of Sintered Ag Nanoparticles
,”
Mater. Trans.
,
59
(
4
), pp.
612
619
.10.2320/matertrans.M2017392
101.
Sato
,
T.
,
Kariya
,
Y.
,
Takahashi
,
H.
,
Nakamura
,
T.
, and
Aiko
,
Y.
,
2019
, “
Evaluation of Fatigue Crack Propagation Behavior of Pressurized Sintered Ag Nanoparticles and Its Application to Thermal Fatigue Life Prediction of Sintered Joint
,”
Mater. Trans.
,
60
(
6
), pp.
850
857
.10.2320/matertrans.MH201802
102.
Sundararajan
,
R.
,
McCluskey
,
P.
, and
Azarm
,
S.
,
1998
, “
Semi Analytic Model for Thermal Fatigue Failure of Die Attach in Power Electronic Building Blocks
,”
Proceedings Fourth International High Temperature Electronic Conference
, Albuquerque, NM, June 14–18, pp.
94
102
.10.1109/HITEC.1998.676768
103.
Pao
,
Y.-H.
,
1992
, “
A Fracture Mechanics Approach to Thermal Fatigue Prediction of Solder Joint
,”
IEEE Trans. Comp., Hybrids Manuf. Technol.
,
15
(
4
), pp.
559
570
.10.1109/33.159886
104.
Riedel
,
H.
,
1981
, “
Creep Deformation at Crack Tips in Elastic-Viscoplastic Solids
,”
J. Mech. Phys. Solids
,
29
(
1
), pp.
35
49
.10.1016/0022-5096(81)90014-4
105.
Shioda
,
R.
,
Kariya
,
Y.
,
Mizumura
,
N.
, and
Sasaki
,
K.
,
2017
, “
Low-Cycle Fatigue Life and Fatigue Propagation of Sintered Ag Nanoparticles
,”
ASME J. Electron. Mater.
,
46
(
2
), pp.
1155
1162
.10.1007/s11664-016-5068-2
106.
Asada
,
Y.
,
Shimakawa
,
T.
,
Kitagawa
,
M.
,
Kodaira
,
T.
,
Wada
,
Y.
, and
Asayama
,
T.
,
1992
, “
Analytical Evaluation Method of J-Integral in Creep-Fatigue Fracture for Type 304 Stainless Steel
,”
Nucl. Engng. Des.
,
133
(
3
), pp.
361
367
.10.1016/0029-5493(92)90162-O
107.
Murakami
,
S.
,
2012
,
Continuum Damage Mechanics: Approach to the Analysis of Damage and Fracture
,
Springer-Verlag
, Dordrecht/Heidelberg/London/New York.
108.
Xiao
,
H.
,
Li
,
X.
,
Liu
,
N.
, and
Yan
,
Y.
,
2011
, “
A Damage Model for SnAgCu Solder Under Thermal Cycling
,”
Proceedings of 12th International Conference on Electronic Packaging Technology and High Density Packaging
, Shanghai, China, Aug. 8–11, pp.
772
776
.10.1109/ICEPT.2011.6066946
109.
Yao
,
Y.
,
He
,
X.
,
Keer
,
L. M.
, and
Fine
,
M. E.
,
2015
, “
A Continuum Damage Mechanics-Based Unified Creep and Plasticity Model for Solder Materials
,”
Acta Mater.
,
83
, pp.
160
168
.10.1016/j.actamat.2014.09.051
110.
Rajaguru
,
P.
,
Lu
,
H.
, and
Bailey
,
C.
,
2015
, “
A Time Dependent Damage Indicator Model for Sn3.5Ag Solder Layer in Power Electronic Module
,”
Microelectron. Reliab
,.
55
(
11
), pp.
2371
2381
.10.1016/j.microrel.2015.07.047
111.
Lai
,
W.
,
Chen
,
M.
,
Ran
,
L.
,
Xu
,
S.
,
Pan
,
L.-M.
,
Alatise
,
O.
, and
Mawby
,
P.
,
2018
, “
Study on Lifetime Prediction Considering Fatigue Accumulative Effect for Die-Attach Solder Layer in an IGBT Module
,”
IEEJ Trans. Electr. Electron. Eng.
,
13
(
4
), pp.
613
621
.10.1002/tee.22607
112.
Darveaux
,
R.
,
Enayet
,
S.
,
Reichman
,
C.
,
Berry
,
C. J.
, and
Zafar
,
N.
,
2011
, “
Crack Initiation and Growth in WLCSP Solder Joints
,”
Proceedings of the 61st Electronics Components Technology Conference
, Lake Buena Vista, FL, May 31–June 3, pp.
940
953
.10.1109/ECTC.2011.5898624
113.
Desai
,
C. S.
, and
Toth
,
J.
,
1996
, “
Distributed State Constitutive Modelling Based on Stress-Strain and Nondestructive Behavior
,”
Int. J. Solids Struct.
,
33
(
11
), pp.
1619
1650
.10.1016/0020-7683(95)00115-8
114.
Desai
,
C. S.
,
Basaran
,
C.
, and
Zhang
,
W.
,
1997
, “
Numerical Algorithms and Mesh Dependence in the Distributed State Concept
,”
Int. J. Num. Meth. Eng.
,
40
(
16
), pp.
3059
3083
.10.1002/(SICI)1097-0207(19970830)40:16<3059::AID-NME182>3.0.CO;2-S
115.
Desai
,
C. S.
,
Basaran
,
C.
,
Dishongh
,
T.
, and
Prince
,
J. L.
,
1998
, “
Thermomechanical Analysis in Electronic Packaging With Unified Constitutive Model for Materials and Joints
,”
IEEE Trans. Comp. Packag. Technol. Part B
,
21
(
1
), pp.
87
97
.10.1109/96.659511
116.
Basaran
,
C.
,
Desai
,
C. S.
, and
Kundu
,
T.
,
1998
, “
Thermomechanical Finite Element Analysis of Problems in Electronic Packaging Using the Distributed State Concept—Part 1: Theory and Formulation
,”
ASME J. Electron. Packag.
,
120
(
1
), pp.
41
47
.10.1115/1.2792284
117.
Desai
,
C. S.
,
2016
, “
Distributed State Concept as Unified Constitutive Modeling Approach
,”
J. Rock Mech. Geotech. Eng.
,
8
(
3
), pp.
277
293
.10.1016/j.jrmge.2016.01.003
118.
Basaran
,
C.
, and
Yan
,
C.-Y.
,
1998
, “
A Thermodynamic Framework for Damage Mechanics of Solder Joints
,”
ASME J. Electron. Packag.
,
120
(
4
), pp.
379
384
.10.1115/1.2792650
119.
Basaran
,
C.
, and
Tang
,
H.
,
2002
, “
Implementation of a Thermodynamic Framework for Damage Mechanics of Solder Interconnects in Microelectronic Packaging
,”
Int. J. Damage Mech.
,
11
(
1
), pp.
87
108
.10.1106/105678902022259
120.
Basaran
,
C.
, and
Chandaroy
,
R.
,
1998
, “
Mechanics of Pb40/Sn60 Near-Eutectic Solder Alloys Subjected to Vibrations
,”
Appl. Math. Model.
,
22
(
8
), pp.
601
627
.10.1016/S0307-904X(98)10059-8
121.
Chandaroy
,
R.
, and
Basaran
,
C.
,
1999
, “
Damage Mechanics of Surface Mount Technology Solder Joints Under Concurrent Thermal and Dynamic Loading
,”
ASME J. Electron. Packag.
,
121
(
2
), pp.
61
68
.10.1115/1.2792669
122.
Bin Jamal M
,
N.
,
Kumar
,
A.
,
Lakshmana Rao
,
C.
, and
Basaran
,
C.
,
2019
, “
Low Cycle Fatigue Life Prediction Using Unified Mechanics Theory in Ti–6Al–4V Alloys
,”
Entropy
,
22
(
1
), p.
24
.10.3390/e22010024
123.
Elices
,
M.
,
Guinea
,
G. V.
,
Gómez
,
J.
, and
Planas
,
J.
,
2002
, “
The Cohesive Zone Model: Advantages, Limitations and Challenges
,”
Eng. Fract. Mech.
,
69
(
2
), pp.
138
163
.10.1016/S0013-7944(01)00083-2
124.
Bhate
,
D.
,
Chan
,
D.
,
Subbarayan
,
G.
, and
Nguyen
,
L.
,
2008
, “
A Nonlinear Fracture Mechanics Approach to Modeling Fatigue Crack Growth in Solder Joints
,”
ASME J. Electron. Packag.
,
130
(
2
), p.
021003
.10.1115/1.2840057
125.
Benabou
,
L.
,
Sun
,
Z.
, and
Dahoo
,
P. R.
,
2013
, “
A Thermo-Mechanical Cohesive Zone Model for Solder Joint Lifetime Prediction
,”
Int. J. Fatig.
,
49
, pp.
18
30
.10.1016/j.ijfatigue.2012.12.008
126.
Miyazaki
,
T.
, and
Ikeda
,
O.
,
2015
, “
Development of Sn-Cu Based Solder for Power Modules
,”
J. Smart Process.
,
4
(
4
), pp.
184
189
.10.7791/jspmee.4.184
127.
Miyazaki
,
T.
,
Ikeda
,
O.
,
Kushima
,
T.
, and
Kawase
,
D.
,
2019
, “
Reliability and Failure Modes in Power Cycling Tests for Solder Bonding
,”
Proceedings of 25th Symposium on Microjoining and Assembly Technology in Electronics (Mate 2019)
, Yokohama, Japan, Jan. 29–30, pp.
337
340
.
128.
Tanaka
,
Y.
,
Fukumoto
,
A.
,
Endo
,
K.
,
Taya
,
M.
,
Yamazaki
,
K.
, and
Nishikawa
,
K.
,
2016
, “
Evaluation of Vertical Degradation in Lead-Free Solder
,”
Proceedings of 22nd Symposium on Microjoining and Assembly Technology in Electronics (Mate 2016)
, Yokohama, Japan, Feb. 2–3, pp.
135
140
.
129.
Sugimoto
,
H.
,
Kariya
,
Y.
,
Hanada
,
R.
,
Ito
,
Y.
,
Yokoyama
,
Y.
, and
Soda
,
S.
,
2019
, “
Fracture Analysis of Vertical Direction Fracture in Die Attach Joint for Power Semiconductor Device
,”
Proceedings of 32nd JSME Computational Division Conference
, Kawagoe, Japan, Sept. 16–18, Paper No. 186.10.23919/LTB-3D.2019.8735334
130.
Harubeppu
,
Y.
,
Tanie
,
H.
,
Ikeda
,
O.
,
Miyazaki
,
T.
,
Kawase
,
D.
,
Morita
,
T.
, and
Sasaki
,
K.
,
2019
, “
Study on Vertical Crack Mechanism of Solder
,”
Proceedings of JSME M&M2019 Conference
, Fukuoka, Japan, Nov. 2–4, Paper No. OS0312.10.1299/jsmemm.2019.OS0312
131.
Taira
,
S.
,
1962
, “
Lifetime of Structures Subjected to Varying Load and Temperature
,”
Creep in Structures
,
Springer-Verlag
, Berlin/Goettingen/Heidelberg, pp.
96
124
.
132.
Halford
,
G. R.
,
Hirschberg
,
M. H.
, and
Manson
,
S. S.
,
1973
, “
Temperature Effects on the Strain Range Partitioning Approach for Creep Fatigue Analysis
,”
Fatigue at Elevated Temperatures
, A. E. Carden, A. J. McEvily and C. H. Wells, ed.,
ASTM International
,
West Conshohocken, PA
, pp.
658
669
.10.1520/STP38877S
133.
Manson
,
S. S.
,
1973
, “
The Challenge to Unify Treatment of High Temperature Fatigue–a Partisan Proposal Based on Strainrange Partitioning
,”
Fatigue at Elevated Temperatures
, A. E. Carden, A. J. McEvily, and C. H. Wells, ed.,
ASTM International
,
West Conshohocken, PA
, pp.
744
782
.10.1520/STP38885S
134.
Robinson
,
E. L.
,
1952
, “
Effect of Temperature Variation on the Long-Time Rupture Strength of Steels
,”
Trans. ASME
,
74
(
5
), pp.
777
781
.
135.
Miyazaki
,
N.
,
Aihara
,
Y.
,
Hagihara
,
S.
, and
Munakata
,
T.
,
1991
, “
Finite Element Creep Damage Analysis of a Tube Using Damage Mechanics
,”
Kagaku Kogaku Ronbunshu
,
17
(
1
), pp.
187
193
.10.1252/kakoronbunshu.17.187
136.
SEMIKRON
,
2014
, “
Application Note AN1404: Thermal Resistance of IGBT Modules–Specification and Modelling
,” SEMIKRON International GmbH, Nuremberg, Germany.
137.
Schwabe
,
C.
,
Seidel
,
P.
, and
Lutz
,
J.
,
2019
, “
Power Cycling Capability of Silicon Low-Voltage MOSFETs Under Different Operation Conditions
,”
Proceedings of 31th International Symposium on Power Semiconductor Devices and ICs
, Shanghai, China, May 19–23, pp.
495
498
.10.1109/ISPSD.2019.8757631
138.
Endo
,
T.
,
1988
, “
Review on Life Prediction for Complex Load Versus Time Histories (Critical Review on Rainflow Algorithm)
,”
Trans. JSME. (Ser. A)
,
54
(
501
), pp.
869
874
.10.1299/kikaia.54.869
139.
Khosrovaneh
,
A. K.
, and
Dowling
,
N. E.
,
1990
, “
Fatigue Loading History Reconstruction Based on the Rainflow Technique
,”
Int. J. Fatig.
,
12
(
2
), pp.
99
106
.10.1016/0142-1123(90)90679-9
140.
Samavatian
,
V.
,
Iman-Eini
,
H.
, and
Avenas
,
Y.
,
2018
, “
An Efficient Online Time-Temperature-Dependent Creep-Fatigue Rainflow Counting Algorithm
,”
Int. J. Fatig.
,
116
, pp.
284
292
.10.1016/j.ijfatigue.2018.06.037
141.
Khatibi
,
G.
,
Lederer
,
M.
,
Weiss
,
B.
,
Licht
,
T.
,
Bernardi
,
J.
, and
Danninger
,
H.
,
2010
, “
Accelerated Mechanical Fatigue Testing and Lifetime of Interconnects in Microelectronics
,”
Procedia Eng.
,
2
(
1
), pp.
511
519
.10.1016/j.proeng.2010.03.055
142.
Czerny
,
B.
, and
Khatibi
,
G.
,
2018
, “
Cyclic Robustness of Heavy Wire Bonds: Al, AlMg, Cu and CucorAl
,”
Microelectron. Reliab.
,
88–90,
pp.
745
751
.10.1016/j.microrel.2018.07.003
You do not currently have access to this content.