Abstract

This paper studied the evolution of binary droplet collision in liquid and also a mathematical calculation method of coalescence time. Binary droplet collisions occur in many engineering applications; however, the accurate models to predict the collision of droplets in the liquid are still lacking. In this work, the binary collision processes of droplets were simulated through computational fluid dynamic (CFD) method, where the interfaces between the two phases were tracked by the volume of fluid (VOF) approach. The results reveal that Weber number determines the results of the head-on collisions, and the cases with the same Weber number present similar evolution processes. If coalescence happens, the collision time decreases with increase in relative velocity, whereas the shape recovery time is independent with the relative velocity, but depends on droplet diameter. It is derived from this research that the collision time is proportional to the droplet diameter, and the shape recovery time is proportional to the 3/2 power of droplet diameter. The droplet moving directions play an important role in the collision results, and the case of two droplets moving toward each other with equal velocity is the easiest way to coalesce. When two droplets with different sizes collide, besides relative velocity, the coalescence and breakup are determined by the absolute velocities, the size, and size ratio of the two droplets. The increase in viscosity of continuous phase results an increase in collision time, but decrease in coalescence time.

References

1.
Torres
,
C. T.
,
Mohan
,
R. S.
,
Gomez
,
L. E.
, and
Shoham
,
O.
,
2016
, “
Oil–Water Flow Pattern Transition Prediction in Horizontal Pipes
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022904
. 10.1115/1.4031608
2.
Gavrielatos
,
I.
,
Dabirian
,
R.
,
Mohan
,
R. S.
, and
Shoham
,
O.
,
2019
, “
Oil/Water Emulsions Stabilized by Nanoparticles of Different Wettabilities
,”
ASME J. Fluids Eng
,
141
(
2
), p.
021301
. 10.1115/1.4040465
3.
Dabirian
,
R.
,
Cui
,
S.
,
Gavrielatos
,
I.
,
Mohan
,
R.
, and
Shoham
,
O.
,
2018
, “
Evaluation of Models for Droplet Shear Effect of Centrifugal Pump
,”
Proceedings of the ASME 2018 Join US-European Fluids Engineering Summer Conference
,
Montreal, QC, Canada
,
July 15–20
, p.
V001T06A014
,
271979
.
4.
Nunez
,
C.
,
Dabirian
,
R.
,
Gavrielatos
,
I.
,
Mohan
,
R. S.
, and
Shoham
,
O.
,
2018
, “
Effect of Particle Wettability on Mineral Oil-Distilled Water Emulsion Stability
,”
Proceedings of the AIChE Eighth World Congress on Particle Technology
,
Orlando, FL
,
Apr. 24
, Paper No. 66(b).
5.
Gavrielatos
,
I.
,
Dabirian
,
R.
,
Mohan
,
R. S.
, and
Shoham
,
O.
,
2017
, “
Separation Kinetics of Oil/Water Emulsions Stabilized by Nanoparticles
,”
Proceedings of the ASME 2017 Join US-European Fluids Engineering Summer Conference
,
Waikoloa, Hawaii,
July 30–Aug. 3
.
6.
Dabirian
,
R.
,
Mohan
,
R. S.
,
Shoham
,
O.
, and
Kouba
,
G.
,
2018
, “
Sand Transport in Slightly Upward Inclined Multiphase Flow
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072901
. 10.1115/1.4039269
7.
Gavrielatos
,
I.
,
Dabirian
,
R.
,
Mohan
,
R. S.
, and
Shoham
,
O.
,
2018
, “
Nanoparticle and Surfactant Oil/Water Emulsions—Is Different Treatment Required
,”
Proceedings of the Society of Petroleum Engineers SPE Western Regional Meeting
,
Garden Grove, CA
,
Apr. 22–26
, p.
190114
.
8.
Taleghani
,
N. D.
, and
Tyagi
,
M.
,
2017
, “
Impacts of Major Offshore Oil Spill Incidents on Petroleum Industry and Regional Economy
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
022913
. 10.1115/1.4035426
9.
Bannwart
,
A. C.
,
Rodriguez
,
O. M. H.
,
Carvalho
,
C. H. M.
,
Wang
,
I. S.
, and
Vara
,
R. M. O.
,
2004
, “
Flow Patterns in Heavy Crude Oil-Water Flow
,”
ASME J. Energy Resour. Technol.
,
126
(
3
), pp.
184
190
. 10.1115/1.1789520
10.
Fairuzov
,
Y. V.
,
Arenas-Medina
,
P.
,
Verdejo-Fierro
,
J.
, and
Gonzalez-Islas
,
R.
,
2000
, “
Flow Pattern Transitions in Horizontal Pipelines Carrying Oil-Water Mixtures: Full-Scale Experiments
,”
ASME J. Energy Resour. Technol.
,
122
(
4
), pp.
169
176
. 10.1115/1.1318204
11.
Shang
,
W.
, and
Sarica
,
C.
,
2013
, “
A Model for Temperature Prediction for Two-Phase Oil/Water Stratified Flow
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
4023931
. 10.1115/1.4023931
12.
Shi
,
H.
,
Cai
,
J.
, and
Jepson
,
W. P.
,
2001
, “
Oil–Water Two-Phase Flows in Large-Diameter Pipelines
,”
ASME J. Energy Resour. Technol.
,
123
(
4
), pp.
270
276
. 10.1115/1.1414136
13.
Gebauer
,
F.
,
Villwock
,
J.
,
Kraume
,
M.
, and
Bart
,
H.-J.
,
2016
, “
Detailed Analysis of Single Drop Coalescence—Influence of Ions on Film Drainage and Coalescence Time
,”
Chem. Eng. Res. Des.
,
115
(
Part B
), pp.
282
291
. 10.1016/j.cherd.2016.09.037
14.
Ashgriz
,
N.
, and
Poo
,
J. Y.
,
1990
, “
Coalescence and Separation in Binary Collision of Liquid Drops
,”
J. Fluid Mech.
,
221
(
12
), pp.
183
204
. 10.1017/S0022112090003536
15.
Jiang
,
Y. J.
,
Umemura
,
A.
, and
Law
,
C. K.
,
1992
, “
An Experimental Investigation on the Collision Behavior of Hydrocarbon Droplets
,”
J. Fluid Mech.
,
234
, pp.
171
190
. 10.1017/S0022112092000740
16.
Qian
,
J.
, and
Law
,
C. K.
,
1997
, “
Regimes of Coalescence and Separation in Droplet Collision
,”
J. Fluid Mech.
,
331
, pp.
59
80
. 10.1017/S0022112096003722
17.
Krishnan
,
K. G.
, and
Loth
,
E.
,
2015
, “
Effects of Gas and Droplet Characteristics on Drop-Drop Collision Outcome Regimes
,”
Int. J. Multiphase Flow
,
77
, pp.
171
186
. 10.1016/j.ijmultiphaseflow.2015.08.003
18.
Nikolopoulos
,
N.
, and
Bergeles
,
G.
,
2011
, “
The Effect of Gas and Liquid Properties and Droplet Size Ratio on the Central Collision Between Two Unequal-Size Droplets in the Reflexive Regime
,”
Int. J. Heat Mass Transfer
,
54
(
1
), pp.
678
691
. 10.1016/j.ijheatmasstransfer.2010.09.002
19.
Focke
,
C.
,
Kuschel
,
M.
,
Sommerfeld
,
M.
, and
Bothe
,
D.
,
2013
, “
Collision Between High and Low Viscosity Droplets: Direct Numerical Simulations and Experiments
,”
Int. J. Multiphase Flow
,
56
, pp.
81
92
. 10.1016/j.ijmultiphaseflow.2013.05.008
20.
Estrade
,
J. P.
,
Carentz
,
H.
,
Lavergne
,
G.
, and
Biscos
,
Y.
,
1999
, “
Experimental Investigation of Dynamic Binary Collision of Ethanol Droplets—A Model for Droplet Coalescence and Bouncing
,”
Int. J. Heat Fluid Flow
,
20
(
5
), pp.
486
491
. 10.1016/S0142-727X(99)00036-3
21.
Planchette
,
C.
,
Lorenceau
,
E.
, and
Brenn
,
G.
,
2011
, “
Binary Collisions of Immiscible Liquid Drops for Liquid Encapsulation
,”
Fluid Dyn. Mater. Process.
,
7
(
3
), pp.
279
301
.
22.
Planchette
,
C.
,
Lorenceau
,
E.
, and
Brenn
,
G.
,
2010
, “
Liquid Encapsulation by Binary Collisions of Immiscible Liquid Drops
,”
Colloids Surf. A
,
365
(
1
), pp.
89
94
. 10.1016/j.colsurfa.2009.12.011
23.
Pawar
,
S. K.
,
Henrikson
,
F.
,
Finotello
,
G.
,
Padding
,
J. T.
,
Deen
,
N. G.
,
Jongsma
,
A.
,
Innings
,
F.
, and
Kuipers
,
J. A. M. H.
,
2016
, “
An Experimental Study of Droplet-Particle Collisions
,”
Powder Technol.
,
300
, pp.
157
163
. 10.1016/j.powtec.2016.06.005
24.
Hasan
,
N.
, and
Zakaria
,
Z. B.
,
2011
, “
Computational Approach for a Pair of Bubble Coalescence Process
,”
Int. J. Heat Fluid Flow
,
32
(
3
), pp.
755
761
. 10.1016/j.ijheatfluidflow.2011.02.004
25.
Nguyen
,
V. T.
,
Song
,
C.-H.
,
Bae
,
B.-U.
, and
Euh
,
D.-J.
,
2013
, “
Modeling of Bubble Coalescence and Break-Up Considering Turbulent Suppression Phenomena in Bubbly Two-Phase Flow
,”
Int. J. Multiphase Flow
,
54
, pp.
31
42
. 10.1016/j.ijmultiphaseflow.2013.03.001
26.
Gotaas
,
C.
,
Havelka
,
P.
,
Jakobsen
,
H. A.
,
Svendsen
,
H. F.
,
Hase
,
M.
,
Roth
,
N.
, and
Weigand
,
B.
,
2007
, “
Effect of Viscosity on Droplet-Droplet Collision Outcome: Experimental Study and Numerical Comparison
,”
Phys. Fluids
,
19
(
10
), p.
102106
. 10.1063/1.2781603
27.
Tanguy
,
S.
, and
Berlemont
,
A.
,
2005
, “
Application of a Level Set Method for Simulation of Droplet Collisions
,”
Int. J. Multiphase Flow
,
31
(
9
), pp.
1015
1035
. 10.1016/j.ijmultiphaseflow.2005.05.010
28.
Quan
,
S.
,
Lou
,
J.
, and
Schmidt
,
D. P.
,
2009
, “
Modeling Merging and Breakup in the Moving Mesh Interface Tracking Method for Multiphase Flow Simulations
,”
J. Comput. Phys.
,
228
(
7
), pp.
2660
2675
. 10.1016/j.jcp.2008.12.029
29.
Sakakibara
,
B.
, and
Inamuro
,
T.
,
2008
, “
Lattice Boltzmann Simulation of Collision Dynamics of Two Unequal-Size Droplets
,”
Int. J. Heat Mass Transfer
,
51
(
11
), pp.
3207
3216
. 10.1016/j.ijheatmasstransfer.2008.02.004
30.
Inamuro
,
T.
,
Tajima
,
S.
, and
Ogino
,
F.
,
2004
, “
Lattice Boltzmann Simulation of Droplet Collision Dynamics
,”
Int. J. Heat Mass Transfer
,
47
(
21
), pp.
4649
4657
. 10.1016/j.ijheatmasstransfer.2003.08.030
31.
Nikolopoulos
,
N.
,
Nikas
,
K. S.
, and
Bergeles
,
G.
,
2009
, “
A Numerical Investigation of Central Binary Collision of Droplets
,”
Computers Fluids
,
38
(
6
), pp.
1191
1202
. 10.1016/j.compfluid.2008.11.007
32.
Kwakkel
,
M.
,
Breugem
,
W.-P.
, and
Boersma
,
B. J.
,
2013
, “
Extension of a CLSVOF Method for Droplet-Laden Flows With a Coalescence/Breakup Model
,”
J. Comput. Phys.
,
253
, pp.
166
188
. 10.1016/j.jcp.2013.07.005
33.
Bararnia
,
H.
,
Seyyedi
,
S. M.
,
Ganji
,
D. D.
, and
Khorshidi
,
B.
,
2013
, “
Numerical Investigation of the Coalescence and Breakup of Falling Multi-Droplets
,”
Colloids Surf. A
,
424
, pp.
40
51
. 10.1016/j.colsurfa.2013.02.024
34.
Blanchette
,
F.
, and
Bigioni
,
T. P.
,
2006
, “
Partial Coalescence of Drops at Liquid Interfaces
,”
Nat. Phys.
,
2
(
4
), pp.
254
257
. 10.1038/nphys268
35.
Mohammadi
,
M.
,
Shahhosseini
,
S.
, and
Bayat
,
M.
,
2012
, “
Direct Numerical Simulation of Water Droplet Coalescence in the oil
,”
Int. J. Heat Fluid Flow
,
36
, pp.
58
71
. 10.1016/j.ijheatfluidflow.2012.04.001
36.
Mansouri
,
A.
,
Arabnejad
,
H.
, and
Mohan
,
R. S.
,
2014
, “
Numerical Investigation of Droplet-Droplet Coalescence and Droplet-Interface Coalescence
,”
Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Summer Conference
,
Chicago, IL
,
Aug. 3–7
, p.
V01AT05A006
,
232684
.
37.
Bresciani
,
A. E.
,
Alves
,
R. M. B.
, and
Nascimento
,
C. A. O.
,
2010
, “
Coalescence of Water Droplets in Crude Oil Emulsions: Analytical Solution
,”
Chem. Eng. Technol.
,
33
(
2
), pp.
237
243
. 10.1002/ceat.200900234
38.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
. 10.1016/0021-9991(92)90240-Y
39.
Youngs
,
D. L.
,
1982
,
Numerical Methods for Fluid Dynamics
,
Academic Press
,
Pittsburgh, PA
, pp.
273
285
.
40.
ANSYS Inc.
,
2017
,
ANSYS Fluent 18.2 User’s Manual
,
ANSYS
,
Canonsburg, PA
.
41.
Nikolopoulos
,
N.
,
Strotos
,
G.
,
Nikas
,
K. S.
, and
Bergeles
,
G.
,
2012
, “
The Effect of Weber Number on the Central Binary Collision Outcome Between Unequal-Sized Droplets
,”
Int. J. Heat Mass Transfer
,
55
(
7
), pp.
2137
2150
. 10.1016/j.ijheatmasstransfer.2011.12.017
You do not currently have access to this content.