Abstract

We have investigated supercritical-p (p > 1192 psi (8.22 MPa)) methanol at pressures up to 1645 psi (11.3 MPa) flowing through a heated tube at flow rates of 4–7 lb/h (1.8–3.2 kg/h). Tube heated lengths have been varied from 4 to 6 in (10 to 15 cm), internal diameters from 0.027 to 0.069 in (0.069 to 0.175 cm), and heat inputs between zero and 800 W. Fluid temperature at the tube inlet remained subcritical (T < 464 °F (513 K)); outlet temperatures were transcritical or supercritical. Two phenomena were observed: system-wide bulk-mode oscillations and localized acoustic modes. In this study, predictive efforts are undertaken to characterize system-wide bulk-mode oscillations. The parameter space has been nondimensionalized, yielding four dimensionless variables. Stability criteria based on these dimensionless groups have been established for two separate test articles and fluids; both criteria suggest that the heat required for the onset of oscillations is proportional to the mass flow rate times the mean pressure and inversely proportional to the fuel density.

References

References
1.
Herring
,
N. R.
, and
Heister
,
S. D.
,
2006
, “
Review of the Development of Compact, High Performance Heat Exchangers for Gas Turbine Applications
,”
ASME
Paper No. IMECE2006-14920.10.1115/IMECE2006-14920
2.
Wiest
,
H.
,
Larson
,
L.
,
Heister
,
S. D.
, and
Meyer
,
S.
,
2013
, “
Experimental Study of Gas Turbine Combustion With Elevated Fuel Temperatures
,”
AIAA
Paper No. 2013-3689.10.2514/6.2013-3689
3.
Hines
,
W. S.
, and
Wolf
,
H.
,
1962
, “
Pressure Oscillations Associated With Heat Transfer to Hydrocarbon Fluids at Supercritical Pressures and Temperatures
,”
ARS J.
,
32
(
3
), pp.
361
366
.10.2514/8.6020
4.
Faith
,
L. E.
,
Ackerman
,
G. H.
, and
Henderson
,
H. T.
,
1971
, “
Heat Sink Capability of Jet a Fuel: Heat Transfer and Coking Studies
,” NASA, Reston, VA, Report No. CR-72951.
5.
Hitch
,
B.
, and
Karpuk
,
M.
,
1998
, “
Enhancement of Heat Transfer and Elimination of Flow Oscillations in Supercritical Fuels
,”
AIAA
Paper No. 98-3759.10.2514/6.98-3759
6.
Linne
,
D.
,
Meyer
,
M.
,
Edwards
,
T.
, and
Eitman
,
D.
,
1997
, “
Evaluation of Heat Transfer and Thermal Stability of Supercritical JP-7 Fuel
,”
AIAA
Paper No. 97-3041.10.2514/6.1997-3041
7.
Linne
,
D.
,
Meyer
,
M.
,
Braun
,
D.
, and
Keller
,
D.
,
2000
, “
Investigation of Instabilities and Heat Transfer Phenomena in Supercritical Fuels at High Heat Flux and Temperatures
,”
AIAA
Paper No. 2000-3128.10.2514/6.2000-3128
8.
Herring
,
N. R.
,
2007
, “
On the Development of Compact, High Performance Heat Exchangers for Gas Turbine Applications
,”
Ph.D. thesis
,
Purdue University
,
West Lafayette, IN
.https://docs.lib.purdue.edu/dissertations/AAI10161425/
9.
Palumbo
,
M.
,
2009
, “
Predicting the Onset of Thermoacoustic Oscillations in Supercritical Fluids
,” Master's thesis,
Purdue University
,
West Lafayette, IN
.
10.
Hunt
,
S.
, and
Heister
,
S. D.
,
2014
, “
Thermoacoustic Oscillations in Supercritical Fuel Flows
,”
AIAA
Paper No. 2014-3973.10.2514/6.2014-3973
11.
Herring
,
N. R.
, and
Heister
,
S. D.
,
2009
, “
On the Use of Wire-Coil Inserts to Augment Tube Heat Transfer
,”
J. Enhanced Heat Transfer
,
16
(
1
), pp.
19
34
.10.1615/JEnhHeatTransf.v16.i1.20
12.
Wang
,
H.
,
Zhou
,
J.
,
Pan
,
Y.
, and
Wang
,
N.
,
2015
, “
Experimental Investigation on the Onset of Thermo-Acoustic Instability of Supercritical Hydrocarbon Fuel Flowing in a Small-Scale Channel
,”
Acta Astronaut.
,
117
, pp.
296
304
.10.1016/j.actaastro.2015.08.009
13.
Pan
,
H.
,
Bi
,
Q.
,
Liu
,
Z.
,
Feng
,
S.
, and
Feng
,
F.
,
2018
, “
Experimental Investigation on Thermo-Acoustic Instability and Heat Transfer of Supercritical Endothermic Hydrocarbon Fuel in a Mini Tube
,”
Exp. Therm. Fluid Sci.
,
97
, pp.
109
118
.10.1016/j.expthermflusci.2018.03.017
14.
Wang
,
Y.
,
Li
,
S.
, and
Dong
,
M.
,
2019
, “
Experimental Investigation on Heat Transfer Deterioration and Thermo-Acoustic Instability of Supercritical-Pressure Aviation Kerosene Within a Vertical Upward Circular Tube
,”
Appl. Therm. Eng.
,
157
, p.
113707
.10.1016/j.applthermaleng.2019.04.117
15.
Sweeney
,
P. C.
,
Heister
,
S. D.
,
Hunt
,
S. A.
,
Scalo
,
C.
, and
Migliorino
,
M. T.
,
2017
, “
System and Method for Stabilizing Transcritical Air-to-Fuel Heat Exchange
,” U.S. Patent Application No. 15/473,759.
16.
Lemmon
,
E. W.
,
McLinden
,
M. O.
, and
Friend
,
D. G.
,
2019
,
Thermophysical Properties of Fluid Systems in NIST Chemistry WebBook, NIST Standard Reference Database Number 69
,
National Institute of Standards and Technology
,
Gaithersburg, MD
, p.
20899
.
17.
Huber
,
M.
,
2003
, “
NIST Thermophysical Properties of Hydrocarbon Mixtures Database (SUPERTRAPP)
,” U.S. Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD.
18.
Migliorino
,
M. T.
, and
Scalo
,
C.
,
2020
, “
Real-Fluid Effects on Standing-Wave Thermoacoustic Instability
,”
J. Fluid Mech.
,
883
, p.
A23
.10.1017/jfm.2019.856
19.
Migliorino
,
M. T.
, and
Scalo
,
C.
,
2020
, “
Heat-Induced Planar Shock Waves in Supercritical Fluids
,”
Shock Waves
,
30
(
2
), pp.
153
167
.10.1007/s00193-019-00934-y
20.
Heister
,
S. D.
,
Anderson
,
W. E.
,
Pourpoint
,
T. L.
, and
Cassady
,
R. J.
,
2019
, “
Rocket Propulsion
,”
Cambridge Aerospace Series
,
Cambridge University Press
,
Cambridge, UK
.
21.
O'Neill
,
L. E.
, and
Mudawar
,
I.
,
2018
, “
Mechanistic Model to Predict Frequency and Amplitude of Density Wave Oscillations in Vertical Upflow Boiling
,”
Int. J. Heat Mass Transfer
,
123
, pp.
143
171
.10.1016/j.ijheatmasstransfer.2018.02.078
You do not currently have access to this content.