Abstract

This study investigates the flow physics on microvortex generators (MVGs) in order to improve their performance in turbulent boundary layers (TBLs). TBLs can be a challenging environment for MVGs because of the streamwise length of the generated vortex and the increased parasitic drag of the MVGs. Large eddy simulation (LES) is used to properly resolve the turbulent boundary layer of a flat-plate with a zero-pressure gradient and MVG vane. Three different vane-types are investigated (e423-Mod, triangular, and rectangular vanes) and are studied in a single vane configuration. Important flow features such as a separation bubble on the leading edge of the rectangular vanes which introduced unsteadiness into the vortex formation and degraded the MVG's efficiency was observed. The e423-Mod and triangular vanes were observed to be more aerodynamically efficient. The triangular vane was found to be the most efficient when evaluated immediately downstream of the vane. However, the vortex from the triangular vane decayed very rapidly due to it being formed very close to the wall which degraded its efficiency further downstream. The e423-Mod vane avoided this problem but its drag was very high relative to the strength of the generated vortex and its vortex experienced a brief period of rapid decay immediately downstream decreasing its efficiency. Further downstream, the vortex of the rectangular vane at 16 deg became the most efficient through a combination of low vane drag and low vortex decay in the TBL, demonstrating the need to consider a range of issues when designing an MVG.

References

References
1.
Rao
,
D.
, and
Kariya
,
T.
,
1988
, “
Boundary-Layer Submerged Vortex Generators for Separation Control—An Exploratory Study
,”
AIAA
Paper No. 88-3546-CP.10.2514/6.1988-3546
2.
Lin
,
J. C.
,
1999
, “
Control of Turbulent Boundary-Layer Separation Using Micro-Vortex Generators
,”
AIAA
Paper No. 99-3404.10.2514/6.1999-3404
3.
Lin
,
J. C.
,
Howard
,
F. G.
, and
Selby
,
G. V.
,
1990
, “
Small Submerged Vortex Generators for Turbulent Flow Separation Control
,”
J. Spacecr. Rockets
,
27
(
5
), pp.
503
507
.10.2514/3.26172
4.
Pauley
,
W. R.
, and
Eaton
,
J. K.
,
1988
, “
Experimental Study of the Development of Longitudinal Vortex Pairs Embedded in a Turbulent Boundary Layer
,”
AIAA J.
,
26
(
7
), pp.
816
823
.10.2514/3.9974
5.
Godard
,
G.
, and
Stanislas
,
N.
,
2006
, “
Control of a Decelerating Boundary Layer: Part 1—Optimization of Passive Vortex Generators
,”
Aerosp. Sci. Technol.
,
10
(
3
), pp.
181
191
.10.1016/j.ast.2005.11.007
6.
Heffron
,
A.
,
Williams
,
J. J.
, and
Avital
,
E.
,
2018
, “
Numerical and Experimental Study of Microvortex Generators
,”
J. Aircr.
,
55
(
6
), pp.
2256
2266
.10.2514/1.C034550
7.
Shabaka
,
I. M. M. A.
,
Mehta
,
R. D.
, and
Bradshaw
,
P.
,
1985
, “
Longitudinal Vortices Imbedded in Turbulent Boundary Layers: Part 1—Single Vortex
,”
J. Fluid Mech.
,
155
, pp.
37
57
.10.1017/S0022112085001707
8.
Liu
,
J.
,
Piomelli
,
U.
, and
Spalart
,
P.
,
1996
, “
Interaction Between a Spatially Growing Turbulent Boundary Layer and Embedded Streamwise Vortices
,”
J. Fluid Mech.
,
326
, pp.
151
179
.10.1017/S0022112096008270
9.
Yao
,
C.
,
Lin
,
J.
, and
Allen
,
B.
,
2002
, “
Flowfield Measurement of Device-Induced Embedded Streamwise Vortex on a Flat Plate
,”
AIAA
Paper No. 2002-3162.10.2514/6.2002-3162
10.
Angele
,
K. P.
, and
Grewe
,
F.
,
2007
, “
Instantaneous Behavior of Streamwise Vortices for Turbulent Boundary Layer Separation Control
,”
ASME J. Fluid Eng.
,
129
(
2
), pp.
226
235
.10.1115/1.2409327
11.
Ashill
,
P.
,
Fulker
,
J.
, and
Hackett
,
K.
,
2001
, “
Research at DERA on Sub Boundary Layer Vortex Generators (SBVGs)
,”
AIAA
Paper No. 2001-887.10.2514/6.2001-887
12.
Ashill
,
P.
,
Fulker
,
J.
, and
Hackett
,
K.
,
2002
, “
Studies of Flows Induced by Sub Boundary Layer Vortex Generators (SBVGs)
,”
AIAA
Paper No. 2002-0968.10.2514/6.2002-968
13.
Allan
,
B.
,
Yao
,
C.-S.
, and
Lin
,
J.
,
2002
, “
Numerical Simulations of Vortex Generator Vanes and Jets on a Flat Plate
,”
AIAA
Paper No. 2002-3160.10.2514/6.2002-3160
14.
Wik
,
E.
, and
Shaw
,
S.
,
2004
, “
Numerical Simulation of Micro Vortex Generators
,”
AIAA
Paper No. 2004-2697.10.2514/6.2004-2697
15.
Heffron
,
A.
,
Williams
,
J. J.
, and
Avital
,
E.
,
2016
, “
Flow Seperation and Passive Flow Control on e387 Airfoil
,”
AIAA
Paper No. 2016-0324.10.2514/6.2016-0324
16.
You
,
D.
,
Wang
,
M.
,
Mittal
,
R.
, and
Moin
,
P.
,
2006
, “
Large-Eddy Simulations of Longitudinal Vortices Embedded in a Turbulent Boundary Layer
,”
AIAA J.
,
44
(
12
), pp.
3032
3039
.10.2514/1.22043
17.
Logdberg
,
O. L. A.
,
Fransson
,
J. H. M.
, and
Alfredsson
,
P. H.
,
2009
, “
Streamwise Evolution of Longitudinal Vortices in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
623
, pp.
27
58
.10.1017/S0022112008004825
18.
Fournier
,
Y.
,
Bonelle
,
J.
,
Moulinec
,
C.
,
Shang
,
Z.
,
Sunderland
,
A. G.
, and
Uribe
,
J. C.
,
2011
, “
Optimizing Code_Saturne Computations on Petascale Systems
,”
Comput. Fluids
,
45
(
1
), pp.
103
108
.10.1016/j.compfluid.2011.01.028
19.
Lund
,
T.
,
Wu
,
X.
, and
Squires
,
K.
,
1998
, “
Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations
,”
J. Comput. Phys.
,
140
(
2
), pp.
233
258
.10.1006/jcph.1998.5882
20.
Cutler
,
A.
, and
Bradshaw
,
P.
,
1989
, “
Vortex/Boundary Layer Interactions
,”
AIAA
Paper No. 89-0083.10.2514/6.1989-83
21.
Mehta
,
R. D.
,
1985
, “
Effect of a Longitudinal Vortex on a Separated Turbulent Boundary Layer
,”
AIAA
Paper No. 85-0530.10.2514/6.1985-530
22.
Ashill
,
P.
,
Fulker
,
J.
, and
Hackett
,
K.
,
2005
, “
A Review of Recent Developments in Flow Control
,”
Aeronaut. J.
,
109
(
1095
), pp.
205
232
.10.1017/S0001924000005200
You do not currently have access to this content.