Abstract

The impeller, which is the main energy conversion component of a pump as turbine (PAT), is designed for pumping mode, and its internal flow characteristics are quite complicated even at the best efficiency point (BEP) of the turbine mode. This study aims to investigate the flow separation characteristics in a PAT impeller under the BEP condition by numerical method. The hydraulic performance and transient pressure characteristics of PAT predicted numerically were verified through experimentation. The surface friction lines and flow topological structure were applied to diagnose the flow separation at the surface of the blade. The relationship between flow topological structure and vortex in the impeller and static pressure at the blade were analyzed. Analysis results show that the backflow and open flow separation are observed significantly in the leading region and near the shroud of the trailing region of suction side. The passage vortex always appears near the spiral node. The saddle point and spiral node correspond to the peak position of adverse pressure and the lowest position between two peak values of the static pressure of the blade, respectively. The inflow conditions of blade and shape of the trailing edge significantly influence the flow separations in the impeller.

References

References
1.
Lin
,
T.
,
Li
,
X.
,
Zhu
,
Z.
,
Xie
,
J.
,
Li
,
Y.
, and
Yang
,
H.
,
2021
, “
Application of Enstrophy Dissipation to Analyze Energy Loss in a Centrifugal Pump as Turbine
,”
Renewable Energy
,
163
, pp.
41
55
.10.1016/j.renene.2020.08.109
2.
Derakhshan
,
S.
, and
Kasaeian
,
N.
,
2014
, “
Optimization, Numerical, and Experimental Study of a Propeller Pump as Turbine
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
012005
.10.1115/1.4026312
3.
Binama
,
M.
,
Su
,
W. T.
,
Li
,
X. B.
,
Li
,
F. C.
,
Wei
,
X. Z.
, and
An
,
S.
,
2017
, “
Investigation on Pump as Turbine (PAT) Technical Aspects for Micro Hydropower Schemes: A State-of-the-Art Review
,”
Renewable Sust. Energy Rev.
,
79
, pp.
148
179
.10.1016/j.rser.2017.04.071
4.
Carravetta
,
A.
,
Fecarotta
,
O.
,
Sinagra
,
M.
, and
Tucciarelli
,
T.
,
2014
, “
Cost-Benefit Analysis for Hydropower Production in Water Distribution Networks by a Pump as Turbine
,”
ASCE J. Water Resour. Plan. Manage.
,
140
(
6
), p.
04014002
.10.1061/(ASCE)WR.1943-5452.0000384
5.
Singh
,
A. D. S. C. P.
,
2018
, “
Influence of Nonflow Zone (Back Cavity) Geometry on the Performance of Pumps as Turbines
,”
ASME J. Fluids Eng.
,
140
(
12
), p.
121107
.10.1115/1.4040300
6.
Delgado
,
J.
,
Ferreira
,
J. P.
,
Covas
,
D. I. C.
, and
Avellan
,
F.
,
2019
, “
Variable Speed Operation of Centrifugal Pumps Running as Turbines. Experimental Investigation
,”
Renewable Energy
,
142
, pp.
437
450
.10.1016/j.renene.2019.04.067
7.
Jain
,
S. V.
,
P
,
N. K.
, and
Patel
,
R. N.
,
2017
, “
Experimental Investigations of Cavitation Characteristics of Pump Running in Turbine Mode
,”
ASCE J. Energy Eng.
,
143
(
1
), p.
04016034
.10.1061/(ASCE)EY.1943-7897.0000387
8.
Ghorani
,
M. M.
,
Sotoude Haghighi
,
M. H.
,
Maleki
,
A.
, and
Riasi
,
A.
,
2020
, “
A Numerical Study on Mechanisms of Energy Dissipation in a Pump as Turbine (PAT) Using Entropy Generation Theory
,”
Renewable Energy
,
162
, pp.
1036
1053
.10.1016/j.renene.2020.08.102
9.
Lin
,
T.
,
Zhu
,
Z.
,
Li
,
X.
,
Li
,
J.
, and
Lin
,
Y.
,
2021
, “
Theoretical, Experimental, and Numerical Methods to Predict the Best Efficiency Point of Centrifugal Pump as Turbine
,”
Renewable Energy
,
168
, pp.
31
44
.10.1016/j.renene.2020.12.040
10.
Liu
,
M.
,
Tan
,
L.
, and
Cao
,
S.
,
2019
, “
Theoretical Model of Energy Performance Prediction and BEP Determination for Centrifugal Pump as Turbine
,”
Energy
,
172
, pp.
712
732
.10.1016/j.energy.2019.01.162
11.
Yang
,
S. S.
,
Liu
,
H.-L.
,
Kong
,
F.-Y.
,
Dai
,
C.
, and
Dong
,
L.
,
2013
, “
Experimental, Numerical, and Theoretical Research on Impeller Diameter Influencing Centrifugal Pump-as-Turbine
,”
ASCE J. Energy Eng.
,
139
(
4
), pp.
299
307
.10.1061/(ASCE)EY.1943-7897.0000128
12.
Yang
,
S. S.
,
Wang
,
C.
,
Chen
,
K.
, and
Yuan
,
X.
,
2015
, “
Research on Blade Thickness Influencing Pump as Turbine
,”
Adv. Mech. Eng.
,
6
, pp.
1
8
.10.1155/2014/190530
13.
Yang
,
S.-S.
,
F.-Y
,
K.
,
Qu
,
X.-Y.
, and
Jiang
,
W.-M.
,
2012
, “
Influence of Blade Number on the Performance and Pressure Pulsations in a Pump Used as a Turbine
,”
ASME J. Fluids Eng.
,
134
(
12
), p.
124503
.10.1115/1.4007810
14.
Yang
,
S.-S.
,
H.-L
,
L.
,
Kong
,
F.-Y.
,
Xia
,
B.
, and
Tan
,
L.-W.
,
2014
, “
Effects of the Radial Gap Between Impeller Tips and Volute Tongue Influencing the Performance and Pressure Pulsations of Pump as Turbine
,”
ASME J. Fluids Eng.
,
136
(
5
), p.
054501
.10.1115/1.4026544
15.
Su
,
X.
,
Huang
,
S.
,
Zhang
,
X.
, and
Yang
,
S.
,
2016
, “
Numerical Research on Unsteady Flow Rate Characteristics of Pump as Turbine
,”
Renewable Energy
,
94
, pp.
488
495
.10.1016/j.renene.2016.03.092
16.
Binama
,
M.
,
Su
,
W. T.
,
Cai
,
W. H.
,
Li
,
X. B.
,
Muhirwa
,
A.
,
Li
,
B.
, and
Bisengimana
,
E.
,
2019
, “
Blade Trailing Edge Position Influencing Pump as Turbine (PAT) Pressure Field Under Part-Load Conditions
,”
Renewable Energy
,
136
, pp.
33
47
.10.1016/j.renene.2018.12.077
17.
Gao
,
Y.
,
Fan
,
X.
, and
Dang
,
R.
,
2019
, “
Numerical Characterization of the Effects of Flow Rate on Pressure and Velocity Distribution of Pump as Turbine
,”
Curr. Sci.
,
117
(
1
), pp.
57
63
.10.18520/cs/v117/i1/57-63
18.
Páscoa
,
J. C.
,
Silva
,
F. J.
,
Pinheiro
,
J. S.
, and
Martins
,
D. J.
,
2010
, “
Accuracy Details in Realistic CFD Modeling of an Industrial Centrifugal Pump in Direct and Reverse Modes
,”
J. Therm. Sci.
,
19
(
6
), pp.
491
499
.10.1007/s11630-010-0414-9
19.
Yao
,
Z.
,
Wang
,
F.
,
Qu
,
L.
,
Xiao
,
R.
,
He
,
C.
, and
Wang
,
M.
,
2011
, “
Experimental Investigation of Time-Frequency Characteristics of Pressure Fluctuations in a Double-Suction Centrifugal Pump
,”
ASME J. Fluids Eng.
,
133
(
10
), p.
101303
.10.1115/1.4004959
20.
Su
,
W. T.
,
Binama
,
M.
,
Li
,
Y.
, and
Zhao
,
Y.
,
2020
, “
Study on the Method of Reducing the Pressure Fluctuation of Hydraulic Turbine by Optimizing the Draft Tube Pressure Distribution
,”
Renewable Energy
,
162
, pp.
550
560
.10.1016/j.renene.2020.08.057
21.
Ren
,
Y.
,
Zhu
,
Z.
,
Wu
,
D.
,
Mu
,
J.
, and
Li
,
X.
,
2016
, “
An Improved Turbulence Model for Separation Flow in a Centrifugal Pump
,”
Adv. Mech. Eng.
,
8
(
6
), pp.
1
10
.10.1177/1687814016653310
22.
Ren
,
Y.
,
Zhu
,
Z.
,
Wu
,
D.
,
Li
,
X.
, and
Jiang
,
L.
,
2019
, “
Investigation of Flow Separation in a Centrifugal Pump Impeller Based on Improved Delayed Detached Eddy Simulation Method
,”
Adv. Mech. Eng.
,
11
(
12
), pp.
1
13
.10.1177/1687814019897832
23.
Keller
,
J.
,
Blanco
,
E.
,
Barrio
,
R.
, and
Parrondo
,
J.
,
2014
, “
PIV Measurements of the Unsteady Flow Structures in a Volute Centrifugal Pump at a High Flow Rate
,”
Exp. Fluids
,
55
(
10
), pp.
1820
1834
.10.1007/s00348-014-1820-7
24.
Goltz
,
I.
,
K
,
G.
,
Stark
,
U.
,
Saathoff
,
H.
, and
Bross
,
S.
,
2003
, “
Stall Inception Phenomena in a Single-Stage Axial-Flow Pump
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
217
(
4
), pp.
471
479
.10.1243/095765003322315531
25.
Posa
,
A.
,
Lippolis
,
A.
, and
Balaras
,
E.
,
2016
, “
Investigation of Separation Phenomena in a Radial Pump at Reduced Flow Rate by Large-Eddy Simulation
,”
ASME J. Fluids Eng.
,
138
(
12
), p.
121101
.10.1115/1.4033843
26.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M. L.
,
Squires
,
K. D.
,
Strelets
,
M. K.
, and
Travin
,
A.
,
2006
, “
A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
(
3
), pp.
181
195
.10.1007/s00162-006-0015-0
27.
Lighthill
,
M. J.
,
1963
,
Laminar Boundary Layer
,
L.
Rosenhead
, ed.,
Oxford University Press
,
Oxford, UK, Chap. 2
.
28.
Wang
,
K. C.
,
1972
, “
Separation Patterns of Boundary Layer Over an Inclined Body of Revolution
,”
AIAA J..
,
10
(
8
), pp.
1044
1050
.10.2514/3.50292
29.
Li
,
X.
,
Shen
,
T.
,
Li
,
P.
,
Guo
,
X.
, and
Zhu
,
Z.
,
2020
, “
Extended Compressible Thermal Cavitation Model for the Numerical Simulation of Cryogenic Cavitating Flow
,”
Int. J. Hydrog. Energy
,
45
(
16
), pp.
10104
10118
.10.1016/j.ijhydene.2020.01.192
30.
Shen
,
S.
,
Qian
,
Z.
,
Ji
,
B.
, and
Agarwal
,
R. K.
,
2019
, “
Numerical Investigation of Tip Flow Dynamics and Main Flow Characteristics With Varying Tip Clearance Widths for an Axial-Flow Pump
,”
Proc. Inst. Mech. Eng. Part A-J. Power Energy
,
233
(
4
), pp.
476
488
.10.1177/0957650918812541
31.
Domnick
,
C. B.
,
Brillert
,
D.
,
Musch
,
C.
, and
Benra
,
F.-K.
,
2017
, “
Clarifying the Physics of Flow Separations in Steam Turbine Inlet Valves at Part Load Operation and Improved Design Considerations
,”
ASME J. Fluids Eng.
,
139
(
8
), p.
081105
.10.1115/1.4036263
32.
Strelets
,
M.
,
2001
, “
Detached Eddy Simulation of Massively Separated Flows
,” 39th Aerospace Sciences Meeting and Exhibit,
Reno, NV
, Jan. 8–11, Paper No.
2001–0879
.10.2514/6.2001-879
33.
Spalart
,
P. R.
, and
Shur
,
M.
,
1997
, “
On the Sensitization of Turbulence Models to Rotation and Curvature
,”
Aerosp. Sci. Technol.
,
1
(
5
), pp.
297
302
.10.1016/S1270-9638(97)90051-1
34.
Casimir
,
N.
,
Zhu
,
X.
, and
Hundshagen
,
M.
,
2020
, “
Numerical Study of Rotor-Stator Interaction of a Centrifugal Pump at Part Load With Special Emphasis on Unsteady Blade Load
,”
ASME J. Fluids Eng.
,
142
(
8
), p.
081203
.10.1115/1.4046622
35.
Wang
,
T.
,
Wang
,
C.
,
Kong
,
F.
,
Gou
,
Q.
, and
Yang
,
S.
,
2017
, “
Theoretical, Experimental, and Numerical Study of Special Impeller Used in Turbine Mode of Centrifugal Pump as Turbine
,”
Energy
,
130
, pp.
473
485
.10.1016/j.energy.2017.04.156
36.
Tobak
,
M.
, and
J
,
P. D.
,
1982
, “
Topology of Three-Dimensional Separated Flows
,”
Annu. Rev. Fluid Mech.
,
14
(
1
), pp.
61
85
.10.1146/annurev.fl.14.010182.000425
37.
Liyimin
.,
2000
, “
Topology Analysis of the 3-D Separation Flow State in Centrifugal Impeller
,”
J. Eng. Thermophys.
,
21
(
3
), pp.
321
323
.
38.
Dallmann
,
U.
,
1983
, “
Topological Structures of Three-Dimensional Vortex Flow Separation
,” In American Institute of Aeronautics and Astronautics 16th Fluid and Plasma Dynamics Conference,
Danvers, USA.
, July 12–14, Paper No.
1983–1735
.10.2514/6.1983-1735
39.
Délery
,
J.
,
2013
,
Three-Dimensional Separated Flow Topology
, 1st ed.,
Wiley-ISTE
,
London
.
40.
Kan
,
X.
,
Wu
,
W.
, and
Zhong
,
J.
,
2020
, “
Effects of Vortex Dynamics Mechanism of Blade-Treatment on the Flow Losses in a Compressor Cascade at Critical Condition
,”
Aerosp. Sci. Technol.
,
102
, p.
105857
.10.1016/j.ast.2020.105857
41.
Liu
,
J.
, and
Liu
,
C.
,
2019
, “
Modified Normalized Rortex/Vortex Identification Method
,”
Phys. Fluids
,
31
(
6
), p.
061704
.10.1063/1.5109437
42.
Sun
,
W.
, and
Tan
,
L.
,
2020
, “
Cavitation-Vortex-Pressure Fluctuation Interaction in a Centrifugal Pump Using Bubble Rotation Modified Cavitation Model Under Partial Load
,”
ASME J. Fluids Eng.
,
142
(
5
), p.
051206
.10.1115/1.4045615
43.
Liu
,
Y.
, and
Tan
,
L.
,
2018
, “
Tip Clearance on Pressure Fluctuation Intensity and Vortex Characteristic of a Mixed Flow Pump as Turbine at Pump Mode
,”
Renewable Energy
,
129
, pp.
606
615
.10.1016/j.renene.2018.06.032
44.
Wang
,
H.
,
Jiang
,
X.
,
Chao
,
Y.
,
Li
,
Q.
,
Li
,
M.
,
Zheng
,
W.
, and
Chen
,
T.
,
2019
, “
Effects of Leading Edge Slat on Flow Separation and Aerodynamic Performance of Wind Turbine
,”
Energy
,
182
, pp.
988
998
.10.1016/j.energy.2019.06.096
You do not currently have access to this content.