Abstract

In the current work, multi-pass friction stir processing (FSP) was utilized to fabricate samples of fine-grained aluminum–zinc (AZ) magnesium alloy and its metal matrix composite (MMC). The microstructure and high-temperature tensile behavior of friction stir processed (FSPed) AZ31 and AZ31/SiC MMC at various strain rates in the range of 10−2 to 10−4 s−1 were investigated, and the fracture mechanisms of each condition were analyzed. The results verified that MMC samples exhibited a remarkable enhancement in microhardness. The evolution of inclined basal texture was observed after processing for both FSPed and MMC samples. The ambient temperature stress–strain response revealed that the formability of AZ31 has improved after friction stir processing, whereas high-temperature flow curves were discernibly sensitive to strain rate. Equiaxed deep dimples were detected on the fracture surfaces of FSPed samples, but decreased strain rate led to an increase in the number of dimples as attributed to the recrystallization of new grains.

References

References
1.
Lentz
,
M.
,
Risse
,
M.
,
Schaefer
,
N.
,
Reimers
,
W.
, and
Beyerlein
,
I. J.
,
2016
, “
Strength and Ductility with {10͞11}—{10͞12} Double Twinning in an Magnesium Alloy
,”
Nat. Commun.
,
7
(
1
), p.
11068
. 10.1038/ncomms11068
2.
Huang
,
L.
,
Wang
,
K.
,
Wang
,
W.
,
Yuan
,
J.
,
Qiao
,
K.
,
Yang
,
T.
,
Peng
,
P.
, and
Li
,
T.
,
2018
, “
Effects of Grain Size and Texture on Stress Corrosion Cracking of Friction Stir Processed AZ80 Magnesium Alloy
,”
Eng. Fail. Anal.
,
92
, pp.
392
404
. 10.1016/j.engfailanal.2018.06.012
3.
Simonds
,
G.
, and
Su
,
B.
,
2006
, “
Magnesium in Automobiles Application Trends and Advantages
,”
IMA-Proceeding
,
International Magnesium Association
, p.
66
.
4.
Singh
,
K.
,
Singh
,
G.
, and
Singh
,
H.
,
2018
, “
Investigation of Microstructure and Mechanical Properties of Friction Stir Welded AZ61 Magnesium Alloy Joint
,”
J. Magnesium Alloys
,
6
(
3
), pp.
292
298
.
5.
Cáceres
,
C. H.
,
2009
, “
Transient Environmental Effects of Light Alloy Substitutions in Transport Vehicles
,”
Mater. Des.
,
30
(
8
), pp.
2813
2822
. 10.1016/j.matdes.2009.01.027
6.
Wei
,
Y.-H.
,
Yin
,
G.-S.
,
Hou
,
L.-F.
,
Xu
,
B.-S.
, and
Ichinose
,
H.
,
2006
, “
Formation Mechanism of Pit’s on the Surface of Thin-Wall die-Casting Magnesium Alloy Components
,”
Eng. Fail. Anal.
,
13
(
4
), pp.
558
564
. 10.1016/j.engfailanal.2005.01.008
7.
Babu
,
J.
,
Anjaiah
,
M.
, and
Mathew
,
A.
,
2018
, “
Experimental Studies on Friction Stir Processing of AZ31 Magnesium Alloy
,”
Mater. Today: Proc.
,
5
(
2, Part 1
), pp.
4515
4522
. 10.1016/j.matpr.2017.12.021
8.
Watanabe
,
H.
,
Mukai
,
T.
,
Ishikawa
,
K.
, and
Higashi
,
K.
,
2002
, “
Low Temperature Super plasticity of a Fine-Grained ZK60 Magnesium Alloy Processed by Equal-Channel-Angular Extrusion
,”
Scr. Mater.
,
46
(
12
), pp.
851
856
. 10.1016/S1359-6462(02)00064-7
9.
Segal
,
V. M.
,
1999
, “
Equal Channel Angular Extrusion: From Macromechanics to Structure Formation
,”
Mater. Sci. Eng. A
,
271
(
1
), pp.
322
333
. 10.1016/S0921-5093(99)00248-8
10.
Saito
,
Y.
,
Utsunomiya
,
H.
,
Tsuji
,
N.
, and
Sakai
,
T.
,
1999
, “
Novel Ultra-High Straining Process for Bulk Materials Development of the Accumulative Roll-Bonding (ARB) Process
,”
Acta Mater.
,
47
(
2
), pp.
579
583
. 10.1016/S1359-6454(98)00365-6
11.
Krishnaiah
,
A.
,
Chakkingal
,
U.
, and
Venugopal
,
P.
,
2005
, “
Production of Ultrafine Grain Sizes in Aluminium Sheets by Severe Plastic Deformation Using the Technique of Groove Pressing
,”
Scr. Mater.
,
52
(
12
), pp.
1229
1233
. 10.1016/j.scriptamat.2005.03.001
12.
Su
,
J.-Q.
,
Nelson
,
T. W.
, and
Sterling
,
C. J.
,
2005
, “
Friction Stir Processing of Large-Area Bulk UFG Aluminum Alloys
,”
Scr. Mater.
,
52
(
2
), pp.
135
140
. 10.1016/j.scriptamat.2004.09.014
13.
Darras
,
B.
,
Khraisheh
,
M.
,
Abu-Farha
,
F.
, and
Omar
,
M.
,
2007
, “
Friction Stir Processing of Commercial AZ31 Magnesium Alloy
,”
J. Mater. Process. Technol.
,
191
(
1–3
), pp.
77
81
. 10.1016/j.jmatprotec.2007.03.045
14.
Nazari
,
M.
,
Eskandari
,
H.
, and
Khodabakhshi
,
F.
,
2019
, “
Production and Characterization of an Advanced AA6061-Graphene-TiB2 Hybrid Surface Nanocomposite by Multi-Pass Friction Stir Processing
,”
Surf. Coat. Technol.
,
377
, p.
124914
. 10.1016/j.surfcoat.2019.124914
15.
Manochehrian
,
A.
,
Heidarpour
,
A.
,
Mazaheri
,
Y.
, and
Ghasemi
,
S.
,
2019
, “
On the Surface Reinforcing of A356 Aluminum Alloy by Nanolayered Ti3AlC2 MAX Phase via Friction Stir Processing
,”
Surf. Coat. Technol.
,
377
, p.
124884
. 10.1016/j.surfcoat.2019.08.013
16.
Rezazadeh
,
V.
,
Sharbatzadeh
,
A.
,
Hosseinzadeh
,
A.
,
Safari
,
A.
, and
Salahi
,
S.
,
2013
, “
Friction Stir Processing: An Operational Method to Improve Ductility in Pure Copper
,”
Adv. Mater. Res.
,
818
, pp.
14
19
.
17.
Chai
,
F.
,
Zhang
,
D.
, and
Li
,
Y.
,
2015
, “
Microstructures and Tensile Properties of Submerged Friction Stir Processed AZ91 Magnesium Alloy
,”
J. Magnesium Alloys
,
3
(
3
), pp.
203
209
. 10.1016/j.jma.2015.08.001
18.
Yang
,
Q.
,
Feng
,
A. H.
,
Xiao
,
B. L.
, and
Ma
,
Z. Y.
,
2012
, “
Influence of Texture on Superplastic Behavior of Friction Stir Processed ZK60 Magnesium Alloy
,”
Mater. Sci. Eng. A
,
556
, pp.
671
677
. 10.1016/j.msea.2012.07.046
19.
Feng
,
A.
, and
Ma
,
Z.
,
2007
, “
Enhanced Mechanical Properties of Mg–Al–Zn Cast Alloy via Friction Stir Processing
,”
Scr. Mater.
,
56
(
5
), pp.
397
400
. 10.1016/j.scriptamat.2006.10.035
20.
Ma
,
Z.
,
Sharma
,
S.
, and
Mishra
,
R.
,
2006
, “
Microstructural Modification of as-Cast Al-Si-Mg Alloy by Friction Stir Processing
,”
Metall. Mater. Trans. A
,
37
(
11
), pp.
3323
3336
. 10.1007/BF02586167
21.
Liu
,
Z.
,
Xiao
,
B.
,
Wang
,
W.
, and
Ma
,
Z.
,
2012
, “
Singly Dispersed Carbon Nanotube/Aluminum Composites Fabricated by Powder Metallurgy Combined with Friction Stir Processing
,”
Carbon
,
50
(
5
), pp.
1843
1852
. 10.1016/j.carbon.2011.12.034
22.
Hsu
,
C.
,
Kao
,
P.
, and
Ho
,
N.
,
2005
, “
Ultrafine-Grained Al–Al2Cu Composite Produced in Situ by Friction Stir Processing
,”
Scr. Mater.
,
53
(
3
), pp.
341
345
. 10.1016/j.scriptamat.2005.04.006
23.
Bauri
,
R.
,
Yadav
,
D.
, and
Suhas
,
G.
,
2011
, “
Effect of Friction Stir Processing (FSP) on Microstructure and Properties of Al–TiC in Situ Composite
,”
Mater. Sci. Eng. A
,
528
(
13–14
), pp.
4732
4739
. 10.1016/j.msea.2011.02.085
24.
Hosseinzadeh
,
A.
, and
Yapici
,
G. G.
,
2018
, “
High Temperature Characteristics of Al2024/SiC Metal Matrix Composite Fabricated by Friction Stir Processing
,”
Mater. Sci. Eng. A
,
731
, pp.
487
494
. 10.1016/j.msea.2018.06.077
25.
Lee
,
C.
,
Huang
,
J.
, and
Hsieh
,
P.
,
2006
, “
Mg Based Nano-Composites Fabricated by Friction Stir Processing
,”
Scr. Mater.
,
54
(
7
), pp.
1415
1420
. 10.1016/j.scriptamat.2005.11.056
26.
Luo
,
X. C.
,
Zhang
,
D. T.
,
Zhang
,
W. W.
,
Qiu
,
C.
, and
Chen
,
D. L.
,
2018
, “
Tensile Properties of AZ61 Magnesium Alloy Produced by Multi-Pass Friction Stir Processing: Effect of Sample Orientation
,”
Mater. Sci. Eng. A
,
725
, pp.
398
405
. 10.1016/j.msea.2018.04.017
27.
Darras
,
B.
, and
Kishta
,
E.
,
2013
, “
Submerged Friction Stir Processing of AZ31 Magnesium Alloy
,”
Mater. Des.
,
47
, pp.
133
137
. 10.1016/j.matdes.2012.12.026
28.
Yang
,
Q.
,
Xiao
,
B. L.
,
Ma
,
Z. Y.
, and
Chen
,
R. S.
,
2011
, “
Achieving High Strain Rate Superplasticity in Mg–Zn–Y–Zr Alloy Produced by Friction Stir Processing
,”
Scr. Mater.
,
65
(
4
), pp.
335
338
. 10.1016/j.scriptamat.2011.04.041
29.
Cavaliere
,
P.
, and
De Marco
,
P. P.
,
2007
, “
Superplastic Behaviour of Friction Stir Processed AZ91 Magnesium Alloy Produced by High Pressure die Cast
,”
J. Mater. Process. Technol.
,
184
(
1
), pp.
77
83
. 10.1016/j.jmatprotec.2006.11.005
30.
Yuan
,
W.
,
Mishra
,
R. S.
,
Carlson
,
B.
,
Mishra
,
R. K.
,
Verma
,
R.
, and
Kubic
,
R.
,
2011
, “
Effect of Texture on the Mechanical Behavior of Ultrafine Grained Magnesium Alloy
,”
Scr. Mater.
,
64
(
6
), pp.
580
583
. 10.1016/j.scriptamat.2010.11.052
31.
Morisada
,
Y.
,
Fujii
,
H.
,
Nagaoka
,
T.
, and
Fukusumi
,
M.
,
2006
, “
MWCNTS/AZ31 Surface Composites Fabricated by Friction Stir Processing
,”
Mater. Sci. Eng. A
,
419
(
1
), pp.
344
348
. 10.1016/j.msea.2006.01.016
32.
Ferkel
,
H.
, and
Mordike
,
B. L.
,
2001
, “
Magnesium Strengthened by SiC Nanoparticles
,”
Mater. Sci. Eng. A
,
298
(
1
), pp.
193
199
. 10.1016/S0921-5093(00)01283-1
33.
Pérez
,
P.
,
Garcés
,
G.
, and
Adeva
,
P.
,
2004
, “
Mechanical Properties of a Mg–10 (vol%)Ti Composite
,”
Compos. Sci. Technol.
,
64
(
1
), pp.
145
151
. 10.1016/S0266-3538(03)00215-X
34.
Nieh
,
T.
,
Schwartz
,
A.
, and
Wadsworth
,
J.
,
1996
, “
Superplasticity in a 17 vol% SiC Particulate-Reinforced ZK60A Magnesium Composite (ZK60/SiC/17p)
,”
Mater. Sci. Eng. A
,
208
(
1
), pp.
30
36
. 10.1016/0921-5093(95)10060-1
35.
Watanabe
,
H.
,
Mukai
,
T.
,
Nieh
,
T.
, and
Higashi
,
K.
,
2000
, “
Low Temperature Superplasticity in a Magnesium-Based Composite
,”
Scr. Mater.
,
42
(
3
), pp.
249
255
. 10.1016/S1359-6462(99)00357-7
36.
Lakshminarayanan
,
A. K.
, and
Balasubramanian
,
V.
,
2008
, “
Process Parameters Optimization for Friction Stir Welding of RDE-40 Aluminium Alloy Using Taguchi Technique
,”
Trans. Nonferrous Met. Soc. China
,
18
(
3
), pp.
548
554
. 10.1016/S1003-6326(08)60096-5
37.
Koilraj
,
M.
,
Sundareswaran
,
V.
,
Vijayan
,
S.
, and
Koteswara Rao
,
S. R.
,
2012
, “
Friction Stir Welding of Dissimilar Aluminum Alloys AA2219 to AA5083—Optimization of Process Parameters Using Taguchi Technique
,”
Mater. Des.
,
42
, pp.
1
7
. 10.1016/j.matdes.2012.02.016
38.
Robson
,
J. D.
,
Henry
,
D. T.
, and
Davis
,
B.
,
2011
, “
Particle Effects on Recrystallization in Magnesium–Manganese Alloys: Particle Pinning
,”
Mater. Sci. Eng. A
,
528
(
12
), pp.
4239
4247
. 10.1016/j.msea.2011.02.030
39.
Robson
,
J. D.
,
Henry
,
D. T.
, and
Davis
,
B.
,
2009
, “
Particle Effects on Recrystallization in Magnesium–Manganese Alloys: Particle-Stimulated Nucleation
,”
Acta Mater.
,
57
(
9
), pp.
2739
2747
. 10.1016/j.actamat.2009.02.032
40.
Doherty
,
R. D.
,
Hughes
,
D. A.
,
Humphreys
,
F. J.
,
Jonas
,
J. J.
,
Jensen
,
D. J.
,
Kassner
,
M. E.
,
King
,
W. E.
,
McNelley
,
T. R.
,
McQueen
,
H. J.
, and
Rollett
,
A. D.
,
1997
, “
Current Issues in Recrystallization: a Review
,”
Mater. Sci. Eng. A
,
238
(
2
), pp.
219
274
. 10.1016/S0921-5093(97)00424-3
41.
Deng
,
K. K.
,
Wang
,
X. J.
,
Zheng
,
M. Y.
, and
Wu
,
K.
,
2013
, “
Dynamic Recrystallization Behavior During hot Deformation and Mechanical Properties of 0.2 μm SiCp Reinforced Mg Matrix Composite
,”
Mater. Sci. Eng. A
,
560
, pp.
824
830
. 10.1016/j.msea.2012.10.044
42.
Hung
,
F.-Y.
,
Shih
,
C.-C.
,
Chen
,
L.-H.
, and
Lui
,
T.-S.
,
2007
, “
Microstructures and High Temperature Mechanical Properties of Friction Stirred AZ31–Mg Alloy
,”
J. Alloys Compd.
,
428
(
1
), pp.
106
114
. 10.1016/j.jallcom.2006.03.066
43.
Peng
,
J.
,
Zhang
,
Z.
,
Huang
,
J. A.
,
Guo
,
P.
,
Li
,
Y.
,
Zhou
,
W.
, and
Wu
,
Y.
,
2019
, “
The Effect of the Inhomogeneous Microstructure and Texture on the Mechanical Properties of AZ31 Mg Alloys Processed by Friction Stir Processing
,”
J. Alloys Compd.
,
792
, pp.
16
24
. 10.1016/j.jallcom.2019.04.014
44.
Hütsch
,
L.
,
Hütsch
,
J.
,
Herzberg
,
K.
,
dos Santos
,
J.
, and
Huber
,
N.
,
2014
, “
Increased Room Temperature Formability of Mg AZ31 by High Speed Friction Stir Processing
,”
Mater. Des. (1980–2015)
,
54
, pp.
980
988
. 10.1016/j.matdes.2013.08.108
45.
Charit
,
I.
, and
Mishra
,
R. S.
,
2003
, “
High Strain Rate Superplasticity in a Commercial 2024 Al Alloy via Friction Stir Processing
,”
Mater. Sci. Eng. A
,
359
(
1–2
), pp.
290
296
. 10.1016/S0921-5093(03)00367-8
46.
Liu
,
Q.
,
Ke
,
L.
,
Liu
,
F.
,
Huang
,
C.
, and
Xing
,
L.
,
2013
, “
Microstructure and Mechanical Property of Multi-Walled Carbon Nanotubes Reinforced Aluminum Matrix Composites Fabricated by Friction Stir Processing
,”
Mater. Des.
,
45
, pp.
343
348
. 10.1016/j.matdes.2012.08.036
47.
Tjong
,
S. C.
,
2007
, “
Novel Nanoparticle-Reinforced Metal Matrix Composites with Enhanced Mechanical Properties
,”
Adv. Eng. Mater.
,
9
(
8
), pp.
639
652
. 10.1002/adem.200700106
48.
Reddy
,
A. C.
,
2007
, “
Effect of Clustering Induced Porosity on Micromechanical Properties of AA6061/Titanium Oxide Particulate Metal Matrix Composites
,”
6th International Conference on Composite Materials and Characterization
,
Hyderabad
, pp.
8
9
.
49.
Nellesen
,
J.
,
Laquai
,
R.
,
Müller
,
B. R.
,
Kupsch
,
A.
,
Hentschel
,
M.
,
Anar
,
N.
,
Soppa
,
E.
,
Tillmann
,
W.
, and
Bruno
,
G.
,
2018
, “
In Situ Analysis of Damage Evolution in an Al/Al2O3 MMC Under Tensile Load by Synchrotron X-ray Refraction Imaging
,”
J. Mater. Sci.
,
53
(
8
), pp.
6021
6032
. 10.1007/s10853-017-1957-x
50.
Chawla
,
N.
, and
Shen
,
Y. L.
,
2001
, “
Mechanical Behavior of Particle Reinforced Metal Matrix Composites
,”
Adv. Eng. Mater.
,
3
(
6
), pp.
357
370
. 10.1002/1527-2648(200106)3:6<357::AID-ADEM357>3.0.CO;2-I
51.
Rokni
,
M.
,
Zarei-Hanzaki
,
A.
,
Roostaei
,
A. A.
, and
Abedi
,
H.
,
2011
, “
An Investigation Into the hot Deformation Characteristics of 7075 Aluminum Alloy
,”
Mater. Des.
,
32
(
4
), pp.
2339
2344
. 10.1016/j.matdes.2010.12.047
52.
Mostaed
,
E.
,
Fabrizi
,
A.
,
Dellasega
,
D.
,
Bonollo
,
F.
, and
Vedani
,
M.
,
2015
, “
Grain Size and Texture Dependence on Mechanical Properties, Asymmetric Behavior and low Temperature Superplasticity of ZK60 Mg Alloy
,”
Mater. Charact.
,
107
, pp.
70
78
. 10.1016/j.matchar.2015.06.009
53.
Han
,
N.
,
Wang
,
Z.
, and
Zhang
,
G.
,
1997
, “
Effect of Reinforcement Size on the Elevated-Temperature Tensile Properties and low-Cycle Fatigue Behavior of Particulate SiC/Al Composites
,”
Compos. Sci. Technol.
,
57
(
11
), pp.
1491
1499
. 10.1016/S0266-3538(97)00072-9
54.
Cavaliere
,
P.
,
2005
, “
Mechanical Properties of Friction Stir Processed 2618/Al2O3/20p Metal Matrix Composite
,”
Composites Part A
,
36
(
12
), pp.
1657
1665
. 10.1016/j.compositesa.2005.03.016
55.
Lu
,
J.
,
Jin
,
L.
,
Dong
,
J.
,
Zeng
,
X.-Q.
,
Ding
,
W.-J.
, and
Yao
,
Z.-Y.
,
2009
, “
Deformation Behaviors of AZ31 Magnesium Alloy by Equal Channel Angular Extrusion
,”
Chin. J. Nonferrous Met.
,
3
, pp.
424
432
.
56.
Lin
,
Y.
,
Deng
,
J.
,
Jiang
,
Y.-Q.
,
Wen
,
D.-X.
, and
Liu
,
G.
,
2014
, “
Hot Tensile Deformation Behaviors and Fracture Characteristics of a Typical Ni-Based Superalloy
,”
Mater. Des.
,
55
, pp.
949
957
. 10.1016/j.matdes.2013.10.071
57.
Montheillet
,
F.
, and
Jonas
,
J. J.
,
1996
, “
Temperature Dependence of the Rate Sensitivity and Its Effect on the Activation Energy for High-Temperature Flow
,”
Metall. Mater. Trans. A
,
27
(
10
), pp.
3346
3348
. 10.1007/BF02663887
58.
Sajadifar
,
S. V.
, and
Yapici
,
G. G.
,
2014
, “
Workability Characteristics and Mechanical Behavior Modeling of Severely Deformed Pure Titanium at High Temperatures
,”
Mater. Des.
,
53
, pp.
749
757
. 10.1016/j.matdes.2013.07.057
59.
del Valle
,
J. A.
, and
Ruano
,
O. A.
,
2006
, “
Influence of the Grain Size on the Strain Rate Sensitivity in an Mg–Al–Zn Alloy at Moderate Temperatures
,”
Scr. Mater.
,
55
(
9
), pp.
775
778
. 10.1016/j.scriptamat.2006.07.013
60.
Paul
,
B.
,
Sarkar
,
A.
,
Chakravartty
,
J.
,
Verma
,
A.
,
Kapoor
,
R.
,
Bidaye
,
A.
,
Sharma
,
I.
, and
Suri
,
A.
,
2010
, “
Dynamic Recrystallization in Sintered Cobalt During High-Temperature Deformation
,”
Metall. Mater. Trans. A
,
41
(
6
), pp.
1474
1482
. 10.1007/s11661-010-0181-y
61.
Poliak
,
E.
, and
Jonas
,
J.
,
1996
, “
A one-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization
,”
Acta Mater.
,
44
(
1
), pp.
127
136
. 10.1016/1359-6454(95)00146-7
62.
Babout
,
L.
,
Brechet
,
Y.
,
Maire
,
E.
, and
Fougères
,
R.
,
2004
, “
On the Competition Between Particle Fracture and Particle Decohesion in Metal Matrix Composites
,”
Acta Mater.
,
52
(
15
), pp.
4517
4525
. 10.1016/j.actamat.2004.06.009
63.
Ozden
,
S.
,
Ekici
,
R.
, and
Nair
,
F.
,
2007
, “
Investigation of Impact Behaviour of Aluminium Based SiC Particle Reinforced Metal–Matrix Composites
,”
Composites Part A
,
38
(
2
), pp.
484
494
. 10.1016/j.compositesa.2006.02.026
You do not currently have access to this content.