Abstract

Copper-containing low-alloy steel based on the ASTM A707 5L grade is widely used for structural parts of offshore wells. However, it is difficult to stably obtain good weld joint toughness. With this background, this paper focuses on the metallurgical factors controlling the heat-affected zone (HAZ) toughness of A707 modified steel. Potential factors considered are the grain size, the martensite–austenite constituent (M-A), and precipitates. Thus, the purpose was to clarify the effect of M-A and precipitates on HAZ toughness. Furthermore, Cu, Si, and Mn contents, which affect M-A and precipitates generations, were focused on and tried to improve HAZ toughness by optimizing their contents in ASTM A707 steel. The weld test results showed that the toughness of an intercritically coarsened grain HAZ (ICRCGHAZ) was remarkably lower than that of the other heat cycle pattern due to the formation of M-A. It is, therefore, essentially important to suppress the formation of M-A in order to improve toughness in the HAZ of the steel. Therefore, the chemical composition was optimized in an effort to improve HAZ toughness. Copper had no negative influence on the HAZ toughness. It was found that when the Mn and Si contents of the steel decreased, the area fraction of M-A decreased. Consequently, the ICRCG HAZ toughness is improved because the toughness increases with the decrease in the area fraction of M-A. The recommended amounts of Cu, Mn, and Si to ensure HAZ toughness are more than 1.0 wt%, less than 0.6 wt%, and less than 0.1 wt%, respectively.

References

References
1.
Saint-Marcoux
,
J.
, and
Legras
,
J.
,
2014
, “
Impact on Risers and Flowlines Design of the FPSO Mooring in Deepwater and Ultra Deepwater
,” OTC 2014, OTC-25165-MS, p.
946
2.
Walsh
,
M. A.
, and
Price
,
S.
,
1997
, “The Chemistry Modifications to ASTM A707 for Offshore Structural Integrity,”
Steel Forgings
, Vol.
2
, ASTM STP1259, p.
196
.
3.
Venturino
,
P.
,
Otegui
,
J. L.
, and
Teutónico
,
M.
,
2012
, “
GAS Pipeline Leakage in Urban Subsurface Soil
,”
Procedia Mater. Sci.
,
1
(
1
), pp.
289
296
. 10.1016/j.mspro.2012.06.039
4.
Papavinasam
,
S.
,
2014
,
Corrosion Control in the Oil and Gas Industry
, Vol.
133
,
Gulf Professional Publishing
.
5.
Honma
,
Y.
,
Sasaki
,
G.
, and
Hashi
,
K.
,
2017
, “
Improvement on Mechanical Properties of Cu-Containing Low Alloy Steel of Long Part Forging for Offshore Applications by Manufacturing Process
,” OMAE2017, OMAE 2017-61728.
6.
Honma
,
Y.
,
Sasaki
,
G.
, and
Hashi
,
K.
,
2019
, “
Effect of Intercritical Quenching Temperature of Cu-Containing Low Alloy Steel of Long Part Forging for Offshore Applications
,”
Appl. Sci.
,
9
(
8
), p.
1705
. 10.3390/app9081705
7.
Minami
,
F.
,
Ohata
,
M.
,
Toyoda
,
M.
,
Arimochi
,
K.
,
Suzuki
,
S.
,
Bessyo
,
K.
,
Thaulow
,
C.
, and
Hauge
,
M.
,
1997
, “Prediction of Specimen Geometry Effect on Fracture Resistance of HAZ-Notched Welds by the Local Approach,”
GKSS Research Center Publications
,
Greesthacht, Germany
, p.
319
.
8.
Lee
,
S. G.
,
Kim
,
B.
,
Sohn
,
S. S.
,
Kim
,
W. G.
,
Um
,
K. K.
, and
Lee
,
S.
,
2019
, “
Effects of Local-Brittle-Zone (LBZ) Microstructures on Crack Initiation and Propagation in Three Mo-Added High-Strength Low-Alloy (HSLA) Steels
,”
Mater. Sci. Eng. A
,
760
(
8
), pp.
125
133
. 10.1016/j.msea.2019.05.120
9.
Kim
,
B. C.
,
Lee
,
S.
,
Kim
,
N. J.
, and
Lee
,
D. Y.
,
1991
, “
Microstructure and Local Brittle Zone Phenomena in High-Strength Low-Alloy Steel Welds
,”
Metall. Mater. Trans. A
,
22
(
1
), pp.
139
149
. 10.1007/BF03350956
10.
Davis
,
C. L.
, and
King
,
J. E.
,
1993
, “
Effect of Cooling Rate on Intercritically Reheated Microstructure and Toughness in High Strength low Alloy Steel
,”
Mater. Sci. Technol.
,
9
(
1
), pp.
8
15
. 10.1179/mst.1993.9.1.8
11.
Kumar
,
S.
, and
Nath
,
S. K.
,
2016
, “
Effect of Heat Input on Impact Toughness in Transition Temperature Region of Weld CGHAZ of a HY 85 Steel
,”
J. Mater. Process. Technol.
,
236
(
10
), pp.
216
224
. 10.1016/j.jmatprotec.2016.05.018
12.
Kim
,
Y. J.
, and
Prince
,
J. W.
,
1987
, “
Temper-Bead Weld Heat-Affected Zone Properties in A516-70 Steel
,”
ASME J. Eng. Mater. Technol.
,
109
(
2
), pp.
157
163
. 10.1115/1.3225956
13.
Alberry
,
P. J.
,
1989
, “
Computer Model for Multipass Repair Welds in SA508 Class 2 Alloy
,”
Weld. J.
,
68
(
6
), pp.
410
417
.
14.
Zhou
,
P.
,
Wang
,
B.
,
Wang
,
L.
,
Hu
,
Y.
, and
Zhou
,
L.
,
2018
, “
Effect of Welding Heat Input on Grain Boundary Evolution and Toughness Properties in CGHAZ of X90 Pipeline Steel
,”
Mater. Sci. Eng. A
,
722
(
14
), pp.
112
121
. 10.1016/j.msea.2018.03.029
15.
Akselsen
,
O. M.
,
Grong
,
O.
, and
Solberg
,
J. K.
,
1987
, “
Structure–Property Relationships in Intercritical Heat Affected Zone of Low-Carbon Microalloyed Steels
,”
Mater. Sci. Technol.
,
3
(
8
), pp.
649
655
. 10.1179/mst.1987.3.8.649
16.
Lee
,
S.
,
Kim
,
B. C.
, and
Kwon
,
D.
,
1992
, “
Correlation of Microstructure and Fracture Properties in Weld Heat-Affected Zones of Thermomechanically Controlled Processed Steels
,”
Metall. Mater. Trans. A
,
23
(
10
), pp.
2803
2816
. 10.1007/BF02651759
17.
Davis
,
C. L.
, and
King
,
J. E.
,
1994
, “
Cleavage Initiation in the Intercritically Reheated Coarse-Grained Heat-Affected Zone: Part I. Fractographic Evidence
,”
Metall. Mater. Trans. A
,
25
(
3
), pp.
563
573
. 10.1007/BF02651598
18.
Tomita
,
Y.
,
Haze
,
T.
,
Saito
,
N.
,
Tsuzuki
,
T.
,
Tokunaga
,
Y.
, and
Okamoto
,
K.
,
1994
, “
Development of 590-MPa Class High Tensile Strength Steel With Superior HAZ Toughness by Copper Precipitation Hardening
,”
ISIJ Int.
,
34
(
10
), pp.
836
842
. 10.2355/isijinternational.34.836
19.
Lepera
,
F. S.
,
1980
, “
Improved Etching Technique to Emphasize Martensite and Bainite in High-Strength Dual-Phase Steel
,”
J. Met.
,
32
(
3
), pp.
38
39
. 10.1007/BF03354553
20.
ISO 15653: 2018, “Metallic materials—Method of Test for the Determination of Quasistatic Fracture Toughness of Welds.”
21.
Takaki
,
S.
,
Fujioka
,
M.
,
Aihara
,
S.
,
Nagataki
,
Y.
,
Yamashita
,
T.
,
Sano
,
N.
,
Adachi
,
Y.
,
Nomura
,
M.
, and
Yaguchi
,
H.
,
2004
, “
Effect of Copper on Tensile Properties and Grain-Refinement of Steel and Its Relation to Precipitation Behavior
,”
Mater. Trans.
,
45
(
7
), pp.
2239
2244
. 10.2320/matertrans.45.2239
22.
Han
,
G.
,
Xie
,
Z. J.
,
Li
,
Z. Y.
,
Lei
,
B.
,
Shang
,
C. J.
, and
Misra
,
R. D. K.
,
2017
, “
Evolution of Crystal Structure of Cu Precipitates in a Low Carbon Steel
,”
Mater. Des.
,
135
(
5
), pp.
92
101
. 10.1016/j.matdes.2017.08.054
23.
Thompson
,
S. W.
, and
Krauss
,
G.
,
1996
, “
Copper Precipitation During Continuous Cooling and Isothermal Aging of a710-Type Steels
,”
Metall. Mater. Trans. A
,
27
(
6
), pp.
1573
1588
. 10.1007/BF02649816
24.
Lee
,
S. G.
,
Lee
,
D. H.
,
Shon
,
S. S.
,
Kim
,
W. G.
,
Um
,
K. K.
,
Kim
,
K. S.
, and
Lee
,
S.
,
2017
, “
Effects of Ni and Mn Addition on Critical Crack Tip Opening Displacement (CTOD) of Weld-Simulated Heat-Affected Zones of Three High-Strength Low-Alloy (HSLA) Steels
,”
Mater. Sci. Eng. A
,
697
(
14
), pp.
55
65
. 10.1016/j.msea.2017.04.115
25.
Ikeuchi
,
K.
,
Liao
,
J.
,
Tanabe
,
H.
, and
Matsuda
,
F.
,
1995
, “
Effect of Temper-Bead Thermal Cycle on Toughness od Weld ICCGHAZ of Low Alloy Steel SQV-2A
,”
ISIJ Int.
,
35
(
10
), pp.
1203
1212
. 10.2355/isijinternational.35.1203
26.
Huda
,
N.
,
Wang
,
Y.
,
Li
,
L.
, and
Gerlich
,
A. P.
,
2019
, “
Effect of Martensite-Austenite (MA) Distribution on Mechanical Properties of Inter-Critical Reheated Coarse Grain Heat Affected Zone in X80 Linepipe Steel
,”
Mat. Sci. Eng. A
,
765
(
23
), p.
138301
. 10.1016/j.msea.2019.138301
27.
Lee
,
S. G.
,
Sohn
,
S. S.
,
Kim
,
B.
,
Kim
,
W. G.
,
Um
,
K. K.
, and
Lee
,
S.
,
2018
, “
Effects of Martensite-Austenite Constituent on Crack Initiation and Propagation in Inter-Critical Heat-Affected Zone of High-Strength Low-Alloy (HSLA) Steel
,”
Mater. Sci. Eng. A
,
715
(
7
), pp.
332
339
. 10.1016/j.msea.2018.01.021
28.
Luo
,
X.
,
Chen
,
X.
,
Wang
,
T.
,
Pan
,
S.
, and
Wang
,
Z.
,
2018
, “
Effect of Morphologies of Martensite–Austenite Constituents on Impact Toughness in Intercritically Reheated Coarse-Grained Heat-Affected Zone of HSLA Steel
,”
Mater. Sci. Eng. A
,
710
(
5
), pp.
192
199
. 10.1016/j.msea.2017.10.079
You do not currently have access to this content.